11 research outputs found

    Reprint of "Selective conversion of CO into ethanol on Cu(511) surface reconstructed from Cu(pc): Operando studies by electrochemical scanning tunneling microscopy, mass spectrometry, quartz crystal nanobalance, and infrared spectroscopy"

    Get PDF
    A polycrystalline copper, surface-terminated by a well-defined (511)-oriented facet, was electrochemically generated by a series of step-wise surface reconstruction and iterations of mild oxidative-reductive processes in 0.1 M KOH. The electrochemical reduction of CO on the resultant stepped surface was investigated by four surface-sensitive operando methodologies: electrochemical scanning tunneling microscopy (STM), electrochemical quartz crystal nanobalance (EQCN), differential electrochemical mass spectrometry (DEMS), and polarization-modulation infrared spectroscopy (PMIRS). The stepped surface catalyzed the facile conversion of CO into ethanol, the exclusive alcohol product at a low overpotential of −1.06 V (SHE) or − 0.3 V (RHE). The chemisorption of CO was found to be a necessary prelude to ethanol production; i.e. the surface coverages, rather than solution concentrations, of CO and its surface-bound intermediates primarily dictate the reaction rates (current densities). Contrary to the expected predominance of undercoordinated step-site reactivity over the coordination chemistry of vicinal surfaces, vibrational spectroscopic evidence reveals the involvement of terrace-bound CO adsorbates during the multi-atomic transformations associated with the production of ethanol

    Selective conversion of CO into ethanol on Cu(511) surface reconstructed from Cu(pc): Operando studies by electrochemical scanning tunneling microscopy, mass spectrometry, quartz crystal nanobalance, and infrared spectroscopy

    Get PDF
    A polycrystalline copper, surface-terminated by a well-defined (511)-oriented facet, was electrochemically generated by a series of step-wise surface reconstruction and iterations of mild oxidative-reductive processes in 0.1 M KOH. The electrochemical reduction of CO on the resultant stepped surface was investigated by four surface-sensitive operando methodologies: electrochemical scanning tunneling microscopy (STM), electrochemical quartz crystal nanobalance (EQCN), differential electrochemical mass spectrometry (DEMS), and polarization-modulation infrared spectroscopy (PMIRS). The stepped surface catalyzed the facile conversion of CO into ethanol, the exclusive alcohol product at a low overpotential of −1.06 V (SHE) or − 0.3 V (RHE). The chemisorption of CO was found to be a necessary prelude to ethanol production; i.e. the surface coverages, rather than solution concentrations, of CO and its surface-bound intermediates primarily dictate the reaction rates (current densities). Contrary to the expected predominance of undercoordinated step-site reactivity over the coordination chemistry of vicinal surfaces, vibrational spectroscopic evidence reveals the involvement of terrace-bound CO adsorbates during the multi-atomic transformations associated with the production of ethanol

    Potential-Dependent Adsorption of CO and Its Low-Overpotential Reduction to CH_3CH_2OH on Cu(511) Surface Reconstructed from Cu(pc): Operando Studies by Seriatim STM-EQCN-DEMS

    Get PDF
    Operando scanning tunneling microscopy first revealed that application of a CO_2-reduction potential to a Cu(pc) electrode in 0.1 M KOH resulted in the reconstruction of the selvedge to an x-layer stack of well-ordered Cu(100) terraces, Cu(pc)-x[Cu(100)]. Subsequent Cu↔Cu_2O oxidation-reduction cycles between −0.90 V and 0.10 V SHE converted the reconstructed region to a stepped Cu(S)-[3(100) × (111)], or Cu(511), surface. Differential electrochemical mass spectrometry showed that reduction of CO produced only CH_3CH_2OH at the lowest overpotential. Later application of STM and surface infrared spectroscopy uncovered a potential, above which no CO adsorption occurs. In this study, electrochemical quartz crystal nanobalance was combined with STM and DEMS as a prelude to the acquisition of CO coverages as continuous functions of concentration and potential; in heterogeneous catalysis, surface coverage are important since the reaction rate are functions of those quantities. Also equally critical is the knowledge of the packing arrangement at the onset of the reaction because, if “CO dimers” were indeed the precursors to C_(2+) products, reduction can only be initiated when the adlayer consists of closely packed CO; otherwise, dimerization will not transpire if the molecules were far apart. The results indicate that the catalysis lags the adsorption, and starts only when CO adsorption is saturated

    Surface reconstruction of pure-Cu single-crystal electrodes under Co-reduction potentials in alkaline solutions: A study by seriatim ECSTM-DEMS

    Get PDF
    Quasi-operando electrochemical scanning tunneling microscopy (ECSTM) recently showed that a polycrystalline Cu electrode kept in 0.1 M KOH at − 0.9 V (SHE), a potential very close to that for electrochemical CO reduction, underwent a two-step surface reconstruction, initially to Cu(111), or Cu(pc)-[Cu(111)], and terminally to Cu(100), or Cu(pc)-[Cu(100)]. When subjected to monolayer-limited Cu_((s)) ↔ Cu_2O_((s)) oxidation-reduction cycles (ORC), the Cu(pc)-[Cu(100)] surface was further transformed to Cu(pc)-[Cu(511)] that produced C_2H_5OH exclusively, as detected by differential electrochemical mass spectrometry, at an overvoltage lower by 645 mV relative to that for the formation of hydrocarbons. In this paper, results are presented from studies with the native monocrystalline surfaces Cu(111), Cu(100) and Cu(110). Whereas the intermediate Cu(pc)-[Cu(111)] layer was eventually converted to Cu(pc)-[Cu(100)], the surface of a pristine Cu(111) single crystal itself showed no such conversion. The surface of an original Cu(100) electrode likewise proved impervious to potential perturbations. In contrast, the outer plane of a Cu(110) crystal underwent three transformations: first to disordered Cu(110)-d[Cu(110)], then to disordered Cu(110)-d[Cu(111)], and finally to an ordered Cu(110)-[Cu(100)] plane. After multiple ORC, the converted [Cu(100)] lattice atop the Cu(110) crystal did not generate ethanol, in contrast to the [Cu(100)] phase above the Cu(pc) bulk. Quasi-operando ECSTM captured the disparity: Post-ORC, Cu(110)-[Cu(100)] was converted, not to Cu(110)-[Cu(511)], but to an ordered but catalytically inactive Cu(110)-[Cu(111)]; hence, no C2H5OH production upon reduction of CO, as would have been the case for a stepped Cu(511) surface

    Surface reconstruction of pure-Cu single-crystal electrodes under Co-reduction potentials in alkaline solutions: A study by seriatim ECSTM-DEMS

    Get PDF
    Quasi-operando electrochemical scanning tunneling microscopy (ECSTM) recently showed that a polycrystalline Cu electrode kept in 0.1 M KOH at − 0.9 V (SHE), a potential very close to that for electrochemical CO reduction, underwent a two-step surface reconstruction, initially to Cu(111), or Cu(pc)-[Cu(111)], and terminally to Cu(100), or Cu(pc)-[Cu(100)]. When subjected to monolayer-limited Cu_((s)) ↔ Cu_2O_((s)) oxidation-reduction cycles (ORC), the Cu(pc)-[Cu(100)] surface was further transformed to Cu(pc)-[Cu(511)] that produced C_2H_5OH exclusively, as detected by differential electrochemical mass spectrometry, at an overvoltage lower by 645 mV relative to that for the formation of hydrocarbons. In this paper, results are presented from studies with the native monocrystalline surfaces Cu(111), Cu(100) and Cu(110). Whereas the intermediate Cu(pc)-[Cu(111)] layer was eventually converted to Cu(pc)-[Cu(100)], the surface of a pristine Cu(111) single crystal itself showed no such conversion. The surface of an original Cu(100) electrode likewise proved impervious to potential perturbations. In contrast, the outer plane of a Cu(110) crystal underwent three transformations: first to disordered Cu(110)-d[Cu(110)], then to disordered Cu(110)-d[Cu(111)], and finally to an ordered Cu(110)-[Cu(100)] plane. After multiple ORC, the converted [Cu(100)] lattice atop the Cu(110) crystal did not generate ethanol, in contrast to the [Cu(100)] phase above the Cu(pc) bulk. Quasi-operando ECSTM captured the disparity: Post-ORC, Cu(110)-[Cu(100)] was converted, not to Cu(110)-[Cu(511)], but to an ordered but catalytically inactive Cu(110)-[Cu(111)]; hence, no C2H5OH production upon reduction of CO, as would have been the case for a stepped Cu(511) surface

    Potential-Dependent Adsorption of CO and Its Low-Overpotential Reduction to CH_3CH_2OH on Cu(511) Surface Reconstructed from Cu(pc): Operando Studies by Seriatim STM-EQCN-DEMS

    Get PDF
    Operando scanning tunneling microscopy first revealed that application of a CO_2-reduction potential to a Cu(pc) electrode in 0.1 M KOH resulted in the reconstruction of the selvedge to an x-layer stack of well-ordered Cu(100) terraces, Cu(pc)-x[Cu(100)]. Subsequent Cu↔Cu_2O oxidation-reduction cycles between −0.90 V and 0.10 V SHE converted the reconstructed region to a stepped Cu(S)-[3(100) × (111)], or Cu(511), surface. Differential electrochemical mass spectrometry showed that reduction of CO produced only CH_3CH_2OH at the lowest overpotential. Later application of STM and surface infrared spectroscopy uncovered a potential, above which no CO adsorption occurs. In this study, electrochemical quartz crystal nanobalance was combined with STM and DEMS as a prelude to the acquisition of CO coverages as continuous functions of concentration and potential; in heterogeneous catalysis, surface coverage are important since the reaction rate are functions of those quantities. Also equally critical is the knowledge of the packing arrangement at the onset of the reaction because, if “CO dimers” were indeed the precursors to C_(2+) products, reduction can only be initiated when the adlayer consists of closely packed CO; otherwise, dimerization will not transpire if the molecules were far apart. The results indicate that the catalysis lags the adsorption, and starts only when CO adsorption is saturated

    Reprint of: Surface reconstruction of pure-Cu single-crystal electrodes under CO-reduction potentials in alkaline solutions: A study by seriatim ECSTM-DEMS

    No full text
    Quasi-operando electrochemical scanning tunneling microscopy (ECSTM) recently showed that a polycrystalline Cu electrode kept in 0.1 M KOH at − 0.9 V (SHE), a potential very close to that for electrochemical CO reduction, underwent a two-step surface reconstruction, initially to Cu(111), or Cu(pc)-[Cu(111)], and terminally to Cu(100), or Cu(pc)-[Cu(100)]. When subjected to monolayer-limited Cu_((s)) ↔ Cu2O_((s))oxidation-reduction cycles (ORC), the Cu(pc)-[Cu(100)] surface was further transformed to Cu(pc)-[Cu(511)] that produced C_2H_5OH exclusively, as detected by differential electrochemical mass spectrometry, at an overvoltage lower by 645 mV relative to that for the formation of hydrocarbons. In this paper, results are presented from studies with the native monocrystalline surfaces Cu(111), Cu(100) and Cu(110). Whereas the intermediate Cu(pc)-[Cu(111)] layer was eventually converted to Cu(pc)-[Cu(100)], the surface of a pristine Cu(111) single crystal itself showed no such conversion. The surface of an original Cu(100) electrode likewise proved impervious to potential perturbations. In contrast, the outer plane of a Cu(110) crystal underwent three transformations: first to disordered Cu(110)-d[Cu(110)], then to disordered Cu(110)-d[Cu(111)], and finally to an ordered Cu(110)-[Cu(100)] plane. After multiple ORC, the converted [Cu(100)] lattice atop the Cu(110) crystal did not generate ethanol, in contrast to the [Cu(100)] phase above the Cu(pc) bulk. Quasi-operando ECSTM captured the disparity: Post-ORC, Cu(110)-[Cu(100)] was converted, not to Cu(110)-[Cu(511)], but to an ordered but catalytically inactive Cu(110)-[Cu(111)]; hence, no C_2H_5OH production upon reduction of CO, as would have been the case for a stepped Cu(511) surface

    Electrochemical surface science twenty years later: Expeditions into the electrocatalysis of reactions at the core of artificial photosynthesis

    No full text
    Surface science research fixated on phenomena and processes that transpire at the electrode-electrolyte interface has been pursued in the past. A considerable proportion of the earlier work was on materials and reactions pertinent to the operation of small-molecule fuel cells. The experimental approach integrated a handful of surface-sensitive physical–analytical methods with traditional electrochemical techniques, all harbored in a single environment-controlled electrochemistry-surface science apparatus (EC-SSA); the catalyst samples were typically precious noble metals constituted of well-defined single-crystal surfaces. More recently, attention has been diverted from fuel-to-energy generation to its converse, (solar) energy-to-fuel transformation; e.g., instead of water synthesis (from hydrogen and oxygen) in fuel cells, water decomposition (to hydrogen and oxygen) in artificial photosynthesis. The rigorous surface-science protocols remain unchanged but the experimental capabilities have been expanded by the addition of several characterization techniques, either as EC-SSA components or as stand-alone instruments. The present manuscript describes results selected from on-going studies of earth-abundant electrocatalysts for the reactions that underpin artificial photosynthesis: nickel-molybdenum alloys for the hydrogen evolution reaction, calcium birnessite as a heterogeneous analogue for the oxygen-evolving complex in natural photosynthesis, and single-crystalline copper in relation to the carbon dioxide reduction reaction
    corecore