54 research outputs found

    Identification of Catalytic Active Sites for Durable Proton Exchange Membrane Fuel Cell: Catalytic Degradation and Poisoning Perspectives

    Get PDF
    Recent progress in synthetic strategies, analysis techniques, and computational modeling assist researchers to develop more active catalysts including metallic clusters to single-atom active sites (SACs). Metal coordinated N-doped carbons (M-N-C) are the most auspicious, with a large number of atomic sites, markedly performing for a series of electrochemical reactions. This perspective sums up the latest innovative and computational comprehension, while giving credit to earlier/pioneering work in carbonaceous assembly materials towards robust electrocatalytic activity for proton exchange membrane fuel cells via inclusive performance assessment of the oxygen reduction reaction (ORR). M-Nx-Cy are exclusively defined active sites for ORR, so there is a unique possibility to intellectually design the relatively new catalysts with much improved activity, selectivity, and durability. Moreover, some SACs structures provide better performance in fuel cells testing with long-term durability. The efforts to understand the connection in SACs based M-Nx-Cy moieties and how these relate to catalytic ORR performance are also conveyed. Owing to comprehensive practical application in the field, this study has covered very encouraging aspects to the current durability status of M-N-C based catalysts for fuel cells followed by degradation mechanisms such as macro-, microdegradation, catalytic poisoning, and future challenges

    Lane Line Detection and Object Scene Segmentation Using Otsu Thresholding and the Fast Hough Transform for Intelligent Vehicles in Complex Road Conditions

    Get PDF
    An Otsu-threshold- and Canny-edge-detection-based fast Hough transform (FHT) approach to lane detection was proposed to improve the accuracy of lane detection for autonomous vehicle driving. During the last two decades, autonomous vehicles have become very popular, and it is constructive to avoid traffic accidents due to human mistakes. The new generation needs automatic vehicle intelligence. One of the essential functions of a cutting-edge automobile system is lane detection. This study recommended the idea of lane detection through improved (extended) Canny edge detection using a fast Hough transform. The Gaussian blur filter was used to smooth out the image and reduce noise, which could help to improve the edge detection accuracy. An edge detection operator known as the Sobel operator calculated the gradient of the image intensity to identify edges in an image using a convolutional kernel. These techniques were applied in the initial lane detection module to enhance the characteristics of the road lanes, making it easier to detect them in the image. The Hough transform was then used to identify the routes based on the mathematical relationship between the lanes and the vehicle. It did this by converting the image into a polar coordinate system and looking for lines within a specific range of contrasting points. This allowed the algorithm to distinguish between the lanes and other features in the image. After this, the Hough transform was used for lane detection, making it possible to distinguish between left and right lane marking detection extraction; the region of interest (ROI) must be extracted for traditional approaches to work effectively and easily. The proposed methodology was tested on several image sequences. The least-squares fitting in this region was then used to track the lane. The proposed system demonstrated high lane detection in experiments, demonstrating that the identification method performed well regarding reasoning speed and identification accuracy, which considered both accuracy and real-time processing and could satisfy the requirements of lane recognition for lightweight automatic driving systems

    ZnO Nano-Flowers Assembled on Carbon Fiber Textile for High-Performance Supercapacitor’s Electrode

    Get PDF
    Herein, a crystalline nano-flowers structured zinc oxide (ZnO) was directly grown on carbon fiber textile (CFT) substrate via a simple hydrothermal process and fabricated with a binder-free electrode (denoted as ZnO@CFT) for supercapacitor (SC) utilization. The ZnO@CFT electrode revealed a 201 F·g−1 specific capacitance at 1 A·g−1 with admirable stability of >90% maintained after 3000 cycles at 10 A·g−1. These impressive findings are responsible for the exceedingly open channels for well-organized and efficient diffusion of effective electrolytic conduction via ZnO and CFT. Consequently, accurate and consistent structural and morphological manufacturing engineering is well regarded when increasing electrode materials’ effective surface area and intrinsic electrical conduction capability. The crystalline structure of ZnO nano-flowers could pave the way for low-cost supercapacitors

    Design and Advanced Manufacturing of NU-1000 Metal–Organic Frameworks with Future Perspectives for Environmental and Renewable Energy Applications

    Get PDF
    Metal–organic frameworks (MOFs) represent a relatively new family of materials that attract lots of attention thanks to their unique features such as hierarchical porosity, active metal centers, versatility of linkers/metal nodes, and large surface area. Among the extended list of MOFs, Zr-based-MOFs demonstrate comparably superior chemical and thermal stabilities, making them ideal candidates for energy and environmental applications. As a Zr-MOF, NU-1000 is first synthesized at Northwestern University. A comprehensive review of various approaches to the synthesis of NU-1000 MOFs for obtaining unique surface properties (e.g., diverse surface morphologies, large surface area, and particular pore size distribution) and their applications in the catalysis (electro-, and photo-catalysis), CO2 reduction, batteries, hydrogen storage, gas storage/separation, and other environmental fields are presented. The review further outlines the current challenges in the development of NU-1000 MOFs and their derivatives in practical applications, revealing areas for future investigation

    Integration of Different Individual Heating Scenarios and Energy Storages into Hybrid Energy System Model of China for 2030

    No full text
    Traditional energy supply infrastructures are on the brink of facing a major transformation due to energy security concerns, environment pollution, renewable energy intermittency and fossil fuel scarcity. A hybrid energy system constitutes the integration of different energy carriers like electricity, heat and fuel which play a vital role in addressing the above challenges. Various technological options like combined heat and power, heat pumps, electrolysers and energy storages ease out multiple carrier integration in an energy hub to increase system flexibility and efficiency. This work models the hybrid energy system of China for the year 2030 by using EnergyPLAN. Atmosphere decarbonization is achieved by replacing conventional coal and natural gas boilers with alternative individual heating sources like hydrogen operated micro combined heat and power natural gas micro combined heat and power and heat pumps. Moreover, rockbed storage as well as single and double penstock pumped hydro storages are added in the proposed system in order to cope with the stochastic nature of intermittent renewable energy such as wind and solar photovoltaic. The technical simulation strategy is employed to analyze the optimal combination of energy producing components by determining annual costs, fuel consumption and CO2 emissions. The results substantiate that a heat pump and double penstock pumped hydro storage addition to the individual heating and electricity network not only proves to be an economically viable option but also reduces fuel consumption and emissions

    Cryogenic-Energy-Storage-Based Optimized Green Growth of an Integrated and Sustainable Energy System

    No full text
    The advancement of using the cryogenic energy storage (CES) system has enabled efficient utilization of abandoned wind and solar energy, and the system can be dispatched in the peak hours of regional power load demand to release energy. It can fill the demand gap, which is conducive to the peak regulation of the power system and can further promote the rapid development of new energy. This study optimizes the various types of energy complementary to the CES system using hybrid gravitational search algorithm-local search optimization (hGSA-LS). First, the mathematical model of the energy storage system (ESS) including the CES system is briefly described. Second, an economic scheduling optimization model of the IES is constructed by minimizing the operating cost of the system. Third, the hGSA-LS methods to solve the optimization problem are proposed. Simulations show that the hGSA-LS methodology is more efficient. The simulation results verify the feasibility of CES compared with traditional systems in terms of economic benefits, new energy consumption rate, primary energy saving rate, and carbon emissions under different fluctuations in energy prices. Optimization of the system operation using the proposed hGSA-LS algorithm takes 5.87 s; however, the GA, PSO, and GSA require 12.56, 10.33, and 7.95 s, respectively. Thus, the hGSA-LS algorithm shows a comparatively better performance than GA, PSO, and GSA in terms of time

    Stance of numerous leadership styles and their effect on teaching to sustain academic performance at the high school level

    No full text
    The present study focused on three leadership, autocratic, democratic, and Laissez-faire, to sustain high school academic performance. To accomplish this, we used quantitative survey method and employed convenient sampling technique to collect data from 358 high school teachers/educators in various regions of Multan, Punjab, Pakistan. Data collection consisted of administering a survey questionnaire that used a five-point Likert Scale. The questionnaire included four variables: one dependent variable, sustained academic Performance, and three independent variables: Autocratic Leadership, Democratic Leadership, and Laissez-faire Leadership. Following data collection, Cronbach's alpha was used to assess the questionnaire's reliability, while the Kolmogorov-Smirnov test was utilized to confirm the normality of the data. Formal statistical analysis included conducting a correlation study to ascertain the association between Autocratic Leadership, Democratic Leadership, and Laissez-faire Leadership with SAP and the impact of each independent variable on the dependent variable. CFA and SEM were conducted using Linear Structural Relations (LISREL) 8.80. These tests were used to identify relationships and differences among the study participants' opinions. The findings indicate that democratic leadership has a highly positive impact, and autocratic leadership has a moderate impact on sustaining academic performance. In contrast, the laissez-faire leadership style has the lowest impact on sustaining academic performance. Based on the study's findings, it is recommended that school teachers/educators should use a combination of democratic and authoritarian leadership styles in their classes to promote cooperation, student participation, ownership in the learning process and leading to their exceptional performance. Furthermore, the findings suggest that schools should actively promote teacher involvement in administrative tasks and decision-making. Ultimately, by integrating the advantages of both types, it is possible to cultivate a comprehensive educational experience that promotes scholarly achievement and equips students with the necessary skills to tackle future problems

    An oriented Ni–Co-MOF anchored on solution-free 1D CuO: a p–n heterojunction for supercapacitive energy storage

    No full text
    Herein, we propose an effective strategy to enhance the electrochemical activity of a metal organic framework-based (MOF) electrode material for electrochemical capacitors. The fabrication involves the synthesis of CuO nanowires on a Cu substrate through a facile solution-free dry oxidation route followed by the deposition of an oriented Ni–Co-zeolitic imidazolate framework (Ni–Co-ZIF) on 1D CuO. This synthesis strategy benefitted from the highly exposed redox active sites of the aligned Ni–CoZIF, an "ion and electrolyte repository", to assist the diffusion of electrolyte ions, and a p–n heterojunction between CuO and the Ni–Co-ZIF. ZIFs represent an emerging and unique class of MOFs. The oriented pseudocapacitive Ni–Co-ZIF@CuO composite electrode yielded excellent electrochemical merits including a high gravimetric capacitance which is 3.3- and 2.1-fold higher than those of the selfsupported CuO and bulk MOF, respectively. Furthermore, we employed first principles density functional theory calculations to study the enhanced electronic conductivity and reduced work function of Ni–CoZIF@CuO systems upon CuO doping, which reinforced the experimental findings. Moreover, an asymmetric supercapacitor (ASC) device was assembled to evaluate the application of the as-fabricated electrode material for electrochemical capacitors. The gadget delivered a maximum energy density of 43 W h kg-1 , with improved cycling stability after 10 000 cycles. The oriented Ni–Co-ZIF@CuO with remarkable electrochemical activity and mechanical flexibility inspires for next-generation MOF-based electrode materials with superior electrochemical attributes

    Binder-Free Porous 3D-ZnO Hexagonal-Cubes for Electrochemical Energy Storage Applications

    No full text
    none8si: Considerable efforts are underway to rationally design and synthesize novel electrode materials for high-performance supercapacitors (SCs). However, the creation of suitable materials with high capacitance remains a big challenge for energy storage devices. Herein, unique three-dimensional (3D) ZnO hexagonal cubes on carbon cloth (ZnO@CC) were synthesized by invoking a facile and economical hydrothermal method. The mesoporous ZnO@CC electrode, by virtue of its high surface area, offers rich electroactive sites for the fast diffusion of electrolyte ions, resulting in the enhancement of the SC's performance. The ZnO@CC electrode demonstrated a high specific capacitance of 352.5 and 250 F g-1 at 2 and 20 A g-1, respectively. The ZnO@CC electrode revealed a decent stability of 84% over 5000 cycles at 20 A g-1 and an outstanding rate-capability of 71% at a 10-fold high current density with respect to 2 A g-1. Thus, the ZnO@CC electrode demonstrated improved electrochemical performance, signifying that ZnO as is promising candidate for SCs applications.noneQasim Abbas; Lianghua Wen; Muhammad Sufyan Javed; Awais Ahmad; M. S Nazir; Mohammed A. Assiri; Muhammad Imran; Patrizia BocchettaAbbas, Qasim; Wen, Lianghua; Sufyan Javed, Muhammad; Ahmad, Awais; S Nazir, M.; Assiri, Mohammed A.; Imran, Muhammad; Bocchetta, Patrizi

    Recent progress in flexible Zn‐ion hybrid supercapacitors: Fundamentals, fabrication designs, and applications

    No full text
    Abstract One of the most exciting new developments in energy storage technology is flexible Zn‐ion hybrid supercapacitors (f‐ZIHSCs), which combine the high energy of Zn‐ion batteries with high‐power supercapacitors to satisfy the needs of portable flexible electronics. However, the development of f‐ZHSCs is still in its infancy, and there are numerous barriers to overcome before they can be widely implemented for practical applications. This review gives an up‐to‐date description of recent achievements and underlying concepts in energy storage mechanisms of f‐ZIHSCs and emphasizes the critical role of cathode, anode, and electrolyte materials systems in speeding the prosperity of f‐ZIHSCs. The innovative nanostructured‐based cathode materials for f‐ZIHSCs include carbon (e.g., porous carbon, heteroatom‐doped carbon, biomass‐derived porous carbon, graphene, etc.), metal‐oxides, MXenes, and metal/covalent‐organic frameworks, and other materials (e.g., activated carbon, phosphorene, etc.) are mainly focused. Afterward, the latest developments in flexible anode and electrolyte frameworks and impacts of electrolyte compositions on the electrochemical properties of f‐ZIHSC are elaborated. Subsequently, the advancements based on fabrication designs, including quasi‐solid‐state, micro, fiber‐shaped, and all climate‐changed f‐ZIHSCs, are discussed in detail. Lastly, a summary of current challenges and recommendations for the future progress of advanced f‐ZIHSC are addressed. This review article is anticipated to further understand the viable strategies and achievable approaches for assembling high‐performance f‐ZIHSCs and boost the technical revolutions on cathode, anode, and electrolytes for f‐ZIHSC devices
    • …
    corecore