7 research outputs found

    SNP array-based whole genome homozygosity mapping as the first step to a molecular diagnosis in patients with Charcot-Marie-Tooth disease

    Get PDF
    Considerable non-allelic heterogeneity for autosomal recessively inherited Charcot-Marie-Tooth (ARCMT) disease has challenged molecular testing and often requires a large amount of work in terms of DNA sequencing and data interpretation or remains unpractical. This study tested the value of SNP array-based whole-genome homozygosity mapping as a first step in the molecular genetic diagnosis of sporadic or ARCMT in patients from inbred families or outbred populations with the ancestors originating from the same geographic area. Using 10 K 2.0 and 250 K Nsp Affymetrix SNP arrays, 15 (63%) of 24 CMT patients received an accurate genetic diagnosis. We used our Java-based script eHoPASA CMT—easy Homozygosity Profiling of SNP arrays for CMT patients to display the location of homozygous regions and their extent of marker count and base-pairs throughout the whole genome. CMT4C was the most common genetic subtype with mutations detected in SH3TC2, one (p.E632Kfs13X) appearing to be a novel founder mutation. A sporadic patient with severe CMT was homozygous for the c.250G > C (p.G84R) HSPB1 mutation which has previously been reported to cause autosomal dominant dHMN. Two distantly related CMT1 patients with early disease onset were found to carry a novel homozygous mutation in MFN2 (p.N131S). We conclude that SNP array-based homozygosity mapping is a fast, powerful, and economic tool to guide molecular genetic testing in ARCMT and in selected sporadic CMT patients

    The wide variation of definitions of genetic testing in international recommendations, guidelines and reports

    No full text
    In spite of being very commonly used, the term genetic testing is debatable and used with several meanings. The diversity of existing definitions is confusing for scientists, clinicians and other professionals, health authorities, legislators and regulating agencies and the civil society in general, particularly when genetic testing is the object of guidelines or legal documents. This work compares definitions of genetic testing found in recommendations, guidelines and reports from international institutions, policy makers and professional organizations, but also in documents from other stakeholders in the field, as the pharmaceutical industry, insurers, ethics bodies, patient organizations or human-rights associations. A systematic review of these documents confirmed the extreme variability existing in the concepts and the ambiguous or equivocal use of the term. Some definitions (narrower) focus on methodologies or the material analysed, while others (broader) are information- or context-based. Its scope may range from being synonymous of just DNA analysis, to any test that yields genetic data. Genetic testing and genetic information, which may be derived from a range of medical exams or even family history, are often used interchangeably. Genetic testing and genetic screening are sometimes confused. Human molecular genetics (a discipline) is not always distinguished from molecular biology (a tool). Professional background, geographical context and purpose of the organizations may influence scope and usage. A common consensus definition does not exist. Nevertheless, a clear set of precise definitions may help creating a common language among geneticists and other health professionals. Moreover, a clear context-dependent, operative definition should always be given

    Scope of definitions of genetic testing: evidence from a EuroGentest survey

    No full text
    Genetic testing is a term used in different settings, often with very different meanings. There are only very few studies published about the various possible definitions of “genetic testing”, and evidence is lacking from its use in professional practise. The need for precise definitions is particularly felt when producing legislation, policy recommendations or professional guidelines. EuroGentest Unit 3 (Clinical, Community and Public Health Genetics) had, as one of its objectives, to analyse definitions of “genetic testing” and propose consensus working definitions, if possible. To assess what was meant when using this term, in each individual professional context, a questionnaire was developed to evaluate if a consensus definition was desirable and achievable and what items or information should be included in the scope of such a definition. The questionnaire was sent to all EuroGentest partners and other registered users of its website; 135 answers were received, a response rate of 22%. The need for a consensus definition was acknowledged by the vast majority, although there was much less concordance about the possibility of attaining one. Clinical geneticists were the most supportive for context-dependent definitions. Conflicting perspectives arose, however, when discussing the inclusion of some type of tests, material or technology used. At issue seemed to be the distinction between the concepts of genetic material-based testing and genetic information

    Biallelic MADD variants cause a phenotypic spectrum ranging from developmental delay to a multisystem disorder

    No full text
    In pleiotropic diseases, multiple organ systems are affected causing a variety of clinical manifestations. Here, we report a pleiotropic disorder with a unique constellation of neurological, endocrine, exocrine, and haematological findings that is caused by biallelic MADD variants. MADD, the mitogen-activated protein kinase (MAPK) activating death domain protein, regulates various cellular functions, such as vesicle trafficking, activity of the Rab3 and Rab27 small GTPases, tumour necrosis factor-Îą (TNF-Îą)-induced signalling and prevention of cell death. Through national collaboration and GeneMatcher, we collected 23 patients with 21 different pathogenic MADD variants identified by next-generation sequencing. We clinically evaluated the series of patients and categorized the phenotypes in two groups. Group 1 consists of 14 patients with severe developmental delay, endo- and exocrine dysfunction, impairment of the sensory and autonomic nervous system, and haematological anomalies. The clinical course during the first years of life can be potentially fatal. The nine patients in Group 2 have a predominant neurological phenotype comprising mild-to-severe developmental delay, hypotonia, speech impairment, and seizures. Analysis of mRNA revealed multiple aberrant MADD transcripts in two patient-derived fibroblast cell lines. Relative quantification of MADD mRNA and protein in fibroblasts of five affected individuals showed a drastic reduction or loss of MADD. We conducted functional tests to determine the impact of the variants on different pathways. Treatment of patient-derived fibroblasts with TNF-Îą resulted in reduced phosphorylation of the extracellular signal-regulated kinases 1 and 2, enhanced activation of the pro-apoptotic enzymes caspase-3 and -7 and increased apoptosis compared to control cells. We analysed internalization of epidermal growth factor in patient cells and identified a defect in endocytosis of epidermal growth factor. We conclude that MADD deficiency underlies multiple cellular defects that can be attributed to alterations of TNF-Îą-dependent signalling pathways and defects in vesicular trafficking. Our data highlight the multifaceted role of MADD as a signalling molecule in different organs and reveal its physiological role in regulating the function of the sensory and autonomic nervous system and endo- and exocrine glands.status: publishe

    Biallelic MADD variants cause a phenotypic spectrum ranging from developmental delay to a multisystem disorder

    No full text
    corecore