41 research outputs found

    Resource Management in a Peer to Peer Cloud Network for IoT

    Get PDF
    Software-Defined Internet of Things (SDIoT) is defined as merging heterogeneous objects in a form of interaction among physical and virtual entities. Large scale of data centers, heterogeneity issues and their interconnections have made the resource management a hard problem specially when there are different actors in cloud system with different needs. Resource management is a vital requirement to achieve robust networks specially with facing continuously increasing amount of heterogeneous resources and devices to the network. The goal of this paper is reviews to address IoT resource management issues in cloud computing services. We discuss the bottlenecks of cloud networks for IoT services such as mobility. We review Fog computing in IoT services to solve some of these issues. It provides a comprehensive literature review of around one hundred studies on resource management in Peer to Peer Cloud Networks and IoT. It is very important to find a robust design to efficiently manage and provision requests and available resources. We also reviewed different search methodologies to help clients find proper resources to answer their needs

    An IoE Blockchain-Based Network Knowledge Management Model for Resilient Disaster Frameworks

    Get PDF
    The disaster area is a constantly changing environment, which can make it challenging to distribute supplies effectively. The lack of accurate information about the required goods and potential bottlenecks in the distribution process can be detrimental. The success of a response network is dependent on collaboration, coordination, sovereignty, and equal distribution of relief resources. To facilitate these interactions and improve knowledge of supply chain operations, a reliable and dynamic logistic system is essential. This study proposes the integration of blockchain technology, the Internet of Things (IoT), and the Internet of Everything (IoE) into the disaster management structure. The proposed disaster response model aims to reduce response times and ensure the secure and timely distribution of goods. The hyper-connected disaster supply network is modeled through a concrete implementation on the Network Simulation (NS2) platform. The simulation results demonstrate that the proposed method yields significant improvements in several key performance metrics. Specifically, it achieved more than a 30% improvement in the successful migration of tasks, a 17% reduction in errors, a 15% reduction in delays, and a 9% reduction in energy consumption
    corecore