57 research outputs found

    Exposure of bakery and pastry apprentices to airborne flour dust using PM2.5 and PM10 personal samplers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study describes exposure levels of bakery and pastry apprentices to flour dust, a known risk factor of occupational asthma.</p> <p>Methods</p> <p>Questionnaires on work activity were completed by 286 students. Among them, 34 performed a series of two personal exposure measurements using a PM<sub>2.5 </sub>and PM<sub>10 </sub>personal sampler during a complete work shift, one during a cold ("winter") period, and the other during a hot ("summer") period.</p> <p>Results</p> <p>Bakery apprentices experience greater average PM<sub>2.5 </sub>and PM<sub>10 </sub>exposures than pastry apprentices (p < 0.006). Exposure values for both particulate fractions are greater in winter (average PM<sub>10 </sub>values among bakers = 1.10 mg.m<sup>-3 </sup>[standard deviation: 0.83]) than in summer (0.63 mg.m<sup>-3 </sup>[0.36]). While complying with current European occupational limit values, these exposures exceed the ACGIH recommendations set to prevent sensitization to flour dust (0.5 mg.m<sup>-3</sup>). Over half the facilities had no ventilation system.</p> <p>Conclusion</p> <p>Young bakery apprentices incur substantial exposure to known airways allergens, a situation that might elicit early induction of airways inflammation.</p

    Susceptibility of low-density lipoprotein particles to aggregate depends on particle lipidome, ismodifiable, and associates with future cardiovascular deaths

    Get PDF
    Aims Low-density lipoprotein (LDL) particles cause atherosclerotic cardiovascular disease (ASCVD) through their retention, modification, and accumulation within the arterial intima. High plasma concentrations of LDL drive this disease, but LDL quality may also contribute. Here, we focused on the intrinsic propensity of LDL to aggregate upon modification. We examined whether inter-individual differences in this quality are linked with LDL lipid composition and coronary artery disease (CAD) death, and basic mechanisms for plaque growth and destabilization.Methods and results We developed a novel, reproducible method to assess the susceptibility of LDL particles to aggregate during lipolysis induced ex vivo by human recombinant secretory sphingomyelinase. Among patients with an established CAD, we found that the presence of aggregation-prone LDL was predictive of future cardiovascular deaths, independently of conventional risk factors. Aggregation-prone LDL contained more sphingolipids and less phosphatidylcholines than did aggregation-resistant LDL. Three interventions in animal models to rationally alter LDL composition lowered its susceptibility to aggregate and slowed atherosclerosis. Similar compositional changes induced in humans by PCSK9 inhibition or healthy diet also lowered LDL aggregation susceptibility. Aggregated LDL in vitro activated macrophages and T cells, two key cell types involved in plaque progression and rupture.Conclusion Our results identify the susceptibility of LDL to aggregate as a novel measurable and modifiable factor in the progression of human ASCVD

    Genetic architecture of human plasma lipidome and its link to cardiovascular disease

    Get PDF
    Understanding genetic architecture of plasma lipidome could provide better insights into lipid metabolism and its link to cardiovascular diseases (CVDs). Here, we perform genome-wide association analyses of 141 lipid species (n = 2,181 individuals), followed by phenome-wide scans with 25 CVD related phenotypes (n = 511,700 individuals). We identify 35 lipid-species-associated loci (P <5 x10(-8)), 10 of which associate with CVD risk including five new loci-COL5A1, GLTPD2, SPTLC3, MBOAT7 and GALNT16 (false discovery rate<0.05). We identify loci for lipid species that are shown to predict CVD e.g., SPTLC3 for CER(d18:1/24:1). We show that lipoprotein lipase (LPL) may more efficiently hydrolyze medium length triacylglycerides (TAGs) than others. Polyunsaturated lipids have highest heritability and genetic correlations, suggesting considerable genetic regulation at fatty acids levels. We find low genetic correlations between traditional lipids and lipid species. Our results show that lipidomic profiles capture information beyond traditional lipids and identify genetic variants modifying lipid levels and risk of CVD

    Effects of glucosamine sulfate on intracellular UDP-hexosamine and UDP-glucuronic acid levels in bovine primary chondrocytes

    Get PDF
    SummaryObjectiveTo analyze the effects of exogenously added glucose (Glc), glucosamine (GlcN) and glucosamine sulfate (GS) on the intracellular UDP-hexoses (UDP-Hex), UDP-N-acetylhexosamines (UDP-HexN) and UDP-glucuronic acid (UDP-GlcA) levels in bovine primary chondrocytes.MethodsChondrocytes were incubated with different concentrations of Glc, GlcN and GS either in high- or low-glucose DMEM for up to 120min to analyze the intracellular levels of UDP-Hex, UDP-GlcA and UDP-HexN by a reversed-phase high-performance liquid chromatography–electrospray ionization mass spectrometry analysis. Glycosaminoglycan (GAG) synthesis rate and aggrecan mRNA expression levels were quantified using 35S-sulfate incorporation assay and quantitative real-time RT-PCR, respectively. The cells were cultivated for 2 days or 8 days before UDP-sugar analysis.ResultsLevels of UDP-HexN and UDP-GlcA were unchanged at 10μM concentration of GS in low-glucose DMEM, while addition of 1mM GlcN or GS in low-glucose DMEM for 10min increased UDP-HexN level. The highest intracellular level of UDP-HexN was reached at 30min after addition of 1mM GS to the cells. The intracellular contents of UDP-HexN and UDP-GlcA related to UDP-Hex were higher after prolonged cultivation of chondrocytes for 8 days compared with 2-day-old cultures. Aggrecan mRNA expression and GAG synthesis remained at control level after the cells were treated with 10, 100μM or 1mM of GS for 24h.ConclusionPhysiologically relevant level of GS could not increase the intracellular UDP-HexN and UDP-GlcA levels in bovine primary chondrocyte, while longer-time culture itself appeared to increase the intracellular UDP-HexN and UDP-GlcA levels
    • …
    corecore