430 research outputs found

    Multiferroicity in spin ice: towards a magnetic crystallography of Tb2Ti2O7 in a field

    Full text link
    We combine two aspects of magnetic frustration, multiferroicity and emergent quasi-particles in spin liquids, by studying magneto-electric monopoles. Spin ice offers to couple these emergent topological defects to external fields, and to each other, in unusual ways, making possible to lift the degeneracy underpinning the spin liquid and to potentially stabilize novel forms of charge crystals, opening the path to a "magnetic crystallography". In developing the general phase diagram including nearest-neighbour coupling, Zeeman energy, electric and magnetic dipolar interactions, we uncover the emergence of a bi-layered crystal of singly-charged monopoles, whose stability, remarkably, is strengthened by an external [110] magnetic field. Our theory is able to account for the ordering process of Tb2Ti2O7 in large field for reasonably small electric energy scales.Comment: 10 pages, 10 figure

    Reentrance of disorder in the anisotropic shuriken Ising model

    Full text link
    For a material to order upon cooling is common sense. What is more seldom is for disorder to reappear at lower temperature, which is known as reentrant behavior. Such resurgence of disorder has been observed in a variety of systems, ranging from Rochelle salts to nematic phases in liquid crystals. Frustration is often a key ingredient for reentrance mechanisms. Here we shall study a frustrated model, namely the anisotropic shuriken lattice, which offers a natural setting to explore an extension of the notion of reentrance between magnetic disordered phases. By tuning the anisotropy of the lattice, we open a window in the phase diagram where magnetic disorder prevails down to zero temperature. In this region, the competition between multiple disordered ground states gives rise to a double crossover where both the low- and high-temperature regimes are less correlated than the intervening classical spin liquid. This reentrance of disorder is characterized by an entropy plateau, a multi-step Curie law crossover and a rather complex diffuse scattering in the static structure factor. Those results are confirmed by complementary numerical and analytical methods: Monte Carlo simulations, Husimi-tree calculations and an exact decoration-iteration transformation.Comment: 16 pages, 13 figure

    Living on the edge : ground-state selection in quantum spin-ice pyrochlores

    Full text link
    The search for new quantum phases, especially in frustrated magnets, is central to modern condensed matter physics. One of the most promising places to look is in rare-earth pyrochlore magnets with highly-anisotropic exchange interactions, materials closely related to the spin ices Ho2Ti2O7 and Dy2Ti2O7. Here we establish a general theory of magnetic order in these materials. We find that many of their most interesting properties can be traced back to the accidental degeneracies where phases with different symmetry meet. These include the ordered ground state selection by fluctuations in Er2Ti2O7, the dimensional-reduction observed in Yb2Ti2O7, and the absence of magnetic order in Er2Sn2O7.Comment: A long-paper version of this preprint, "Living on the Edge", appears as arXiv:1603.09466 [accepted for publication in Physical Review B]. The text of v2 is otherwise unchanged from v1 (Submitted on 14 Nov 2013

    Classical spin liquids in stacked triangular lattice Ising antiferromagnets

    Full text link
    We study Ising antiferromagnets that have nearest-neighbour interactions on multilayer triangular lattices with frustrated (abcabc and abababab) stacking, and make comparisons with the unfrustrated (aaaaaa) stacking. If interlayer couplings are much weaker than in-plane ones, the paramagnetic phase of models with frustrated stackings has a classical spin-liquid regime at low temperature, in which correlations are strong both within and between planes, but there is no long-range order. We investigate this regime using Monte Carlo simulations and by mapping the spin models to coupled height models, which are treated using renormalisation group methods and an analysis of the effects of vortex excitations. The classical spin-liquid regime is parametrically wide at small interlayer coupling in models with frustrated stackings. By contrast, for the unfrustrated stacking there is no extended regime in which interlayer correlations are strong without three-dimensional order.Comment: 25 pages, 21 figures; version to appear in Physical Review B, includes minor correction

    Crystal Shape-Dependent Magnetic Susceptibility and Curie Law Crossover in the Spin Ices Dy2Ti2O7 and Ho2Ti2O7

    Full text link
    We present an experimental determination of the isothermal magnetic susceptibility of the spin ice materials Dy2Ti2O7 and Ho2Ti2O7 in the temperature range 1.8-300 K. The use of spherical crystals has allowed the accurate correction for demagnetizing fields and allowed the true bulk isothermal susceptibility X_T(T) to be estimated. This has been compared to a theoretical expression based on a Husimi tree approximation to the spin ice model. Agreement between experiment and theory is excellent at T > 10 K, but systematic deviations occur below that temperature. Our results largely resolve an apparent disagreement between neutron scattering and bulk measurements that has been previously noted. They also show that the use of non-spherical crystals in magnetization studies of spin ice may introduce very significant systematic errors, although we note some interesting - and possibly new - systematics concerning the demagnetizing factor in cuboidal samples. Finally, our results show how experimental susceptibility measurements on spin ices may be used to extract the characteristic energy scale of the system and the corresponding chemical potential for emergent magnetic monopoles.Comment: 11 pages, 3 figures 1 table. Manuscript submitte

    Spin ice under pressure: symmetry enhancement and infinite order multicriticality

    Get PDF
    We study the low-temperature behaviour of spin ice when uniaxial pressure induces a tetragonal distortion. There is a phase transition between a Coulomb liquid and a fully magnetised phase. Unusually, it combines features of discontinuous and continuous transitions: the order parameter exhibits a jump, but this is accompanied by a divergent susceptibility and vanishing domain wall tension. All these aspects can be understood as a consequence of an emergent SU(2) symmetry at the critical point. We map out a possible experimental realisation

    A Three Dimensional Kasteleyn Transition: Spin Ice in a [100] Field

    Get PDF
    We examine the statistical mechanics of spin-ice materials with a [100] magnetic field. We show that the approach to saturated magnetisation is, in the low-temperature limit, an example of a 3D Kasteleyn transition, which is topological in the sense that magnetisation is changed only by excitations that span the entire system. We study the transition analytically and using a Monte Carlo cluster algorithm, and compare our results with recent data from experiments on Dy2Ti2O7.Comment: 4 pages, 5 figure

    Curie-law crossover in spin liquids

    Full text link
    The Curie-Weiss law is widely used to estimate the strength of frustration in frustrated magnets. However, the Curie-Weiss law was originally derived as an estimate of magnetic correlations close to a mean-field phase transition, which -- by definition -- is absent in spin liquids. Instead, the susceptibility of spin liquids is known to undergo a Curie-law crossover between two magnetically disordered regimes. Here, we study the generic aspect of the Curie-law crossover by comparing a variety of frustrated spin models in two and three dimensions, using both classical Monte Carlo simulations and analytical Husimi tree calculations. Husimi tree calculations fit remarkably well the simulations for all temperatures and almost all lattices. We also propose a Husimi Ansatz for the reduced susceptibility χT\chi T, to be used in complement to the traditional Curie-Weiss fit in order to estimate the Curie-Weiss temperature θcw\theta_{\rm cw}. Applications to materials are discussed.Comment: 26 pages, 15 figure

    Analysis of a fully packed loop model arising in a magnetic Coulomb phase

    Full text link
    The Coulomb phase of spin ice, and indeed the Ic phase of water ice, naturally realise a fully-packed two-colour loop model in three dimensions. We present a detailed analysis of the statistics of these loops, which avoid themselves and other loops of the same colour, and contrast their behaviour to an analogous two-dimensional model. The properties of another extended degree of freedom are also addressed, flux lines of the emergent gauge field of the Coulomb phase, which appear as "Dirac strings" in spin ice. We mention implications of these results for related models, and experiments.Comment: 5 pages, 4 figure
    • …
    corecore