23 research outputs found

    Oxide Dispersion Strengthened Nickel Based Alloys via Spark Plasma Sintering

    Get PDF
    Oxide dispersion strengthened (ODS) nickel based alloys were developed via mechanical milling and spark plasma sintering (SPS) of Ni–20Cr powder with additional dispersion of 1.2 wt% Y2O3 powder. Furthermore, 5 wt% Al2O3 was added to Ni–20Cr–1.2Y2O3 to provide composite strengthening in the ODS alloy. The effects of milling times, sintering temperature, and sintering dwell time were investigated on both mechanical properties and microstructural evolution. A high number of annealing twins was observed in the sintered microstructure for all the milling times. However, longer milling time contributed to improved hardness and narrower twin width in the consolidated alloys. Higher sintering temperature led to higher fraction of recrystallized grains, improved density and hardness. Adding 1.2 wt% Y2O3 to Ni–20Cr matrix significantly reduced the grain size due to dispersion strengthening effect of Y2O3 particles in controlling the grain boundary mobility and recrystallization phenomena. The strengthening mechanisms at room temperature were quantified based on both experimental and analytical calculations with a good agreement. A high compression yield stress obtained at 800 °C for Ni–20Cr–1.2Y2O3–5Al2O3 alloy was attributed to a combined effect of dispersion and composite strengthening

    Assessing the Standalone Sensitivity of Computer-aided Detection (CADe) with Cancer Cases from the Digital Mammographic Imaging Screening Trial (DMIST)

    Get PDF
    To assess the sensitivities and false detection rates of two CADe systems when applied to digital or screen-film mammograms in detecting the known breast cancer cases from the DMIST breast cancer screening population

    Antihypertensive and antioxidant effects of dietary black sesame meal in pre-hypertensive humans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It has been known that hypertension is an independent risk factor for cardiovascular disease (CVD). CVD is the major cause of morbidity and mortality in developed and developing countries. Elevation of blood pressure (BP) increases the adverse effect for cardiovascular outcomes. Prevention of increased BP plays a crucial role in a reduction of those outcomes, leading to a decrease in mortality. Therefore, the purpose of this study was to investigate the effects of dietary black sesame meal on BP and oxidative stress in individuals with prehypertension.</p> <p>Methods</p> <p>Twenty-two women and eight men (aged 49.8 ± 6.6 years) with prehypertension were randomly divided into two groups, 15 subjects per group. They ingested 2.52 g black sesame meal capsules or placebo capsules each day for 4 weeks. Blood samples were obtained after overnight fasting for measurement of plasma lipid, malondialdehyde (MDA) and vitamin E levels. Anthropometry, body composition and BP were measured before and after 4-week administration of black sesame meal or a placebo.</p> <p>Results</p> <p>The results showed that 4-week administration of black sesame meal significantly decreased systolic BP (129.3 ± 6.8 vs. 121.0 ± 9.0 mmHg, <it>P </it>< 0.05) and MDA level (1.8 ± 0.6 vs. 1.2 ± 0.6 μmol/L, <it>P </it>< 0.05), and increased vitamin E level (29.4 ± 6.0 vs. 38.2 ± 7.8 μmol/L, <it>P </it>< 0.01). In the black sesame meal group, the change in SBP tended to be positively related to the change in MDA (<it>R = 0.50, P </it>= 0.05), while the change in DBP was negatively related to the change in vitamin E (<it>R = -0.55, P </it>< 0.05). There were no correlations between changes in BP and oxidative stress in the control group.</p> <p>Conclusions</p> <p>These results suggest the possible antihypertensive effects of black sesame meal on improving antioxidant status and decreasing oxidant stress. These data may imply a beneficial effect of black sesame meal on prevention of CVD.</p

    Uranium Migration in Spark Plasma Sintered W/UO\u3csub\u3e2 \u3c/sub\u3eCERMETS

    No full text
    W/UO2 CERMET samples were sintered in a Spark Plasma Sintering (SPS) furnace at various temperature under vacuum and pressure. High Resolution Transmission Electron Microscopy (HRTEM) with Energy Dispersive Spectroscopy (EDS) was performed on the samples to determine interface structures and uranium diffusion from the UO2 particles into the tungsten matrix. Local Electrode Atom Probe (LEAP) was also performed to determine stoichiometry of the UO2 particles. It was seen that uranium diffused approximately 10–15 nm into the tungsten matrix. This is explained in terms of production of oxygen vacancies and Fick\u27s law of diffusion

    2LiBH4–MgH2–0.13TiCl4 confined in nanoporous structure of carbon aerogel scaffold for reversible hydrogen storage

    Get PDF
    The investigations based on kinetic improvement and reaction mechanisms during melt infiltration, dehydrogenation, and rehydrogenation of nanoconfined 2LiBH4-MgH2-0.13TiCl4 in carbon aerogel scaffold (CAS) are proposed. It is found that TiCl4 and LiBH4 are successfully nanoconfined in CAS, while MgH2 proceeds partially. In the same temperature (25-500ºC) and time (0?5 h at constant temperature) ranges nanoconfined 2LiBH4-MgH2-0.13TiCl4 dehydrogenates completely 99% of theoretical H2 storage capacity, while that of nanoconfined 2LiBH4?MgH2 is only 94%. Nanoconfined 2LiBH4-MgH2-0.13TiCl4 performs three-step dehydrogenation at 140, 240, and 380ºC. Onset (the first-step) dehydrogenation temperature (140ºC), significantly lower than those of nanoconfined sample of 2LiBH4-MgH2 and 2LiBH4-MgH2-TiCl3 (DT = 140 and 110ºC, respectively) is in agreement with the decomposition of eutectic LiBH4-Mg(BH4)2 and lithium?titanium borohydride. For the second and third steps (240 and 380ºC),decompositions of LiBH4 destabilized by LiCl solvation and MgH2 are accomplished, respectively. In conclusion, dehydrogenation products are B, Mg, LiH, and TiH. Reversibility of nanoconfined 2LiBH4-MgH2-0.13TiCl4 sample is confirmed by the recovery of LiBH4 after rehydrogenation together with the formation of [B12H12] derivatives. The superior kinetics during the 2nd, 3rd, and 4th cycles of nanoconfined2LiBH4-MgH2-0.13TiCl4 to the nanoconfined 2LiBH4-MgH2 can be due to the formations of Ti-MgH2 alloys (Mg0.25Ti0.75H2 and Mg6TiH2) during the 1st rehydrogenation.Fil: Gosalawit Utke, Rapee. Institute of Materials Research; Alemania. Suranaree University of Technology; TailandiaFil: Milanese, Chiara. University of Pavia; ItaliaFil: Javadian, Payam. University of Aarhus; DinamarcaFil: Girella, Alessandro. University of Pavia; ItaliaFil: Laipple, Daniel. Institute of Materials Research; AlemaniaFil: Puszkiel, Julián Atilio. Institute of Materials Research; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Cattaneo, Alice S.. University of Aarhus; DinamarcaFil: Ferrara, Chiara. University of Aarhus; DinamarcaFil: Wittayakhun, Jatuporn. Suranaree University of Technology; TailandiaFil: Skibsted, Jørgen. University of Aarhus; DinamarcaFil: Jensen, Torben R.. University of Aarhus; DinamarcaFil: Marini, Amedeo. University of Pavia; ItaliaFil: Klassen, Thomas. Institute of Materials Research; AlemaniaFil: Dornheim, Martin. Institute of Materials Research; Alemani
    corecore