5 research outputs found

    Screening for the presence of mcr-1/mcr-2 genes in Shiga toxin-producing Escherichia coli recovered from a major produce-production region in California.

    No full text
    The rapid spreading of polymyxin E (colistin) resistance among bacterial strains through the horizontally transmissible mcr-1 and mcr-2 plasmids has become a serious concern. The emergence of these genes in Shiga toxin-producing Escherichia coli (STEC), a group of human pathogenic bacteria was even more worrisome, urging us to investigate the prevalence of mcr genes among STEC isolates. A total of 1000 STEC isolates, recovered from livestock, wildlife, produce and other environmental sources in a major production region for leafy vegetables in California during 2006-2014, were screened by PCR for the presence of plasmid-borne mcr-1 and mcr-2. All isolates tested yielded negative results, indicating if any, the occurrence rate of mcr-1/mcr-2 among STEC was very low in this agricultural region. This study provides valuable information such as sample size needed and methodologies for future surveillance programs of antimicrobial resistance

    Isolation, genotyping and antimicrobial resistance of Shiga toxin-producing Escherichia coli

    No full text
    Shiga toxin-producing Escherichia coli (STEC) is an enteric pathogen linked to outbreaks of human gastroenteritis with diverse clinical spectra. In this review, we have examined the currently methodologies and molecular characterization techniques for assessing the phenotypic, genotypic and functional characteristics of STEC O157 and non-O157. In particular, traditional culture and isolation methods, including selective enrichment and differential plating, have enabled the effective recovery of STEC. Following recovery, immunological serotyping of somatic surface antigens (O-antigens) and flagellum (H-antigens) are employed for the classification of the STEC isolates. Molecular genotyping methods, including multiple-locus variable-number tandem repeat analysis, arrays, and whole genome sequencing, can discriminate the isolate virulence profile beyond the serotype level. Virulence profiling is focused on the identification of chromosomal and plasmid genes coding for adhesins, cytotoxins, effectors, and hemolysins to better assess the pathogenic potential of the recovered STEC isolates. Important animal reservoirs are cattle and other small domestic ruminants. STEC can also be recovered from other carriers, such as mammals, birds, fish, amphibians, shellfish and insects. Finally, antimicrobial resistance in STEC is a matter of growing concern, supporting the need to monitor the use of these agents by private, public and agricultural sectors. Certain antimicrobials can induce Shiga toxin production and thus promote the onset of severe disease symptoms in humans. Together, this information will provide a better understanding of risks associated with STEC and will aid in the development of efficient and targeted intervention strategies. Keywords: Antimicrobials, Escherichia coli, Food safety, Genotyping, Zoonosi

    Sample sources that yielded the Shiga toxin-producing <i>E</i>. <i>coli</i> strains, examined in the present study.

    No full text
    <p>Wildlife (32%), watersheds (24%), leafy vegetables (22%), livestock (18%), other vegetables (1%), sediment (1%), soil (1%), and fruit (1%).</p

    Antimicrobial resistance profiles of Shiga toxin-producing Escherichia coli O157 and Non-O157 recovered from domestic farm animals in rural communities in Northwestern Mexico

    No full text
    Abstract Background Antimicrobial resistance in Shiga toxin-producing Escherichia coli (STEC) O157 and non-O157 is a matter of increasing concern. The aim of the present study was to investigate the antimicrobial resistance profiles of STEC O157 and non-O157 recovered from feces of domestic farm animals in the agricultural Culiacan Valley in Northwestern Mexico. Findings All of the examined STEC strains showed susceptibility to five antimicrobials, ceftazidime, ceftriaxone, ciprofloxacin, nalidixic acid, and trimethoprim-sulfamethoxazole. However, resistance to the four antimicrobials, ampicillin, cephalothin, chloramphenicol, and kanamycin was commonly observed. Interestingly, non-susceptibility to cephalothin was predominant among the examined STEC strains, corresponding to 85 % (22/26) of the O157:H7 from cattle, sheep and chicken and 73 % (24/33) of the non-O157 strains from cattle and sheep. Statistical analyses revealed that resistance to ampicillin was significantly correlated to 38 % (10/26) of STEC O157:H7 strains from multiple animal sources. Another significant correlation was found between serotype, source, and antimicrobial resistance; all of the O20:H4 strains, recovered from sheep, were highly resistant to tetracycline. Multidrug resistance profiles were identified in 42 % (22/53) of the non-susceptible STEC strains with clinically-relevant serotypes O8:H9, O75:H8, O146:H21, and O157:H7. Conclusions STEC O157 and non-O157 strains, recovered from domestic farm animals in the Culiacan Valley, exhibited resistance to classes of antimicrobials commonly used in Mexico, such as aminoglycosides, tetracyclines, cephalosporins and penicillin but were susceptible to fluoroquinolones, quinolones, and sulfonamides. These findings provide fundamental information that would aid in the surveillance of antimicrobial resistance in an important agricultural region in Northwestern Mexico
    corecore