59 research outputs found

    Simple isatin derivatives as free radical scavengers: Synthesis, biological evaluation and structure-activity relationship

    Get PDF
    To develop more potent small molecules with enhanced free radical scavenger properties, a series of N-substituted isatin derivatives was synthesized, and the cytoprotective effect on the apoptosis of PC12 cells induced by H2O2 was screened. All these compounds were found to be active, and N-ethyl isatin was found with the most potent activity of 69.7% protective effect on PC12 cells. Structure-activity relationship analyses showed the bioactivity of N-alkyl isatins decline as the increasing of the chain of the alkyl group, furthermore odd-even effect was found in the activity, which is interesting for further investigation

    Increased Expression of Fatty-Acid and Calcium Metabolism Genes in Failing Human Heart

    Get PDF
    Heart failure (HF) involves alterations in metabolism, but little is known about cardiomyopathy-(CM)-specific or diabetes-independent alterations in gene expression of proteins involved in fatty-acid (FA) uptake and oxidation or in calcium-(Ca(2+))-handling in the human heart.RT-qPCR was used to quantify mRNA expression and immunoblotting to confirm protein expression in left-ventricular myocardium from patients with HF (n = 36) without diabetes mellitus of ischaemic (ICM, n = 16) or dilated (DCM, n = 20) cardiomyopathy aetiology, and non-diseased donors (CTL, n = 6).Significant increases in mRNA of genes regulating FA uptake (CD36) and intracellular transport (Heart-FA-Binding Protein (HFABP)) were observed in HF patients vs CTL. Significance was maintained in DCM and confirmed at protein level, but not in ICM. mRNA was higher in DCM than ICM for peroxisome-proliferator-activated-receptor-alpha (PPARA), PPAR-gamma coactivator-1-alpha (PGC1A) and CD36, and confirmed at the protein level for PPARA and CD36. Transcript and protein expression of Ca(2+)-handling genes (Two-Pore-Channel 1 (TPCN1), Two-Pore-Channel 2 (TPCN2), and Inositol 1,4,5-triphosphate Receptor type-1 (IP3R1)) increased in HF patients relative to CTL. Increases remained significant for TPCN2 in all groups but for TPCN1 only in DCM. There were correlations between FA metabolism and Ca(2+)-handling genes expression. In ICM there were six correlations, all distinct from those found in CTL. In DCM there were also six (all also different from those found in CTL): three were common to and three distinct from ICM.DCM-specific increases were found in expression of several genes that regulate FA metabolism, which might help in the design of aetiology-specific metabolic therapies in HF. Ca(2+)-handling genes TPCN1 and TPCN2 also showed increased expression in HF, while HF- and CM-specific positive correlations were found among several FA and Ca(2+)-handling genes

    Targeting fatty acid and carbohydrate oxidation - A novel therapeutic intervention in the ischemic and failing heart

    No full text
    Cardiac ischemia and its consequences including heart failure, which itself has emerged as the leading cause of morbidity and mortality in developed countries are accompanied by complex alterations in myocardial energy substrate metabolism. In contrast to the normal heart, where fatty acid and glucose metabolism are tightly regulated, the dynamic relationship between fatty acid β-oxidation and glucose oxidation is perturbed in ischemic and ischemic-reperfused hearts, as well as in the failing heart. These metabolic alterations negatively impact both cardiac efficiency and function. Specifically there is an increased reliance on glycolysis during ischemia and fatty acid β-oxidation during reperfusion following ischemia as sources of adenosine triphosphate (ATP) production. Depending on the severity of heart failure, the contribution of overall myocardial oxidative metabolism (fatty acid β-oxidation and glucose oxidation) to adenosine triphosphate production can be depressed, while that of glycolysis can be increased. Nonetheless, the balance between fatty acid β-oxidation and glucose oxidation is amenable to pharmacological intervention at multiple levels of each metabolic pathway. This review will focus on the pathways of cardiac fatty acid and glucose metabolism, and the metabolic phenotypes of ischemic and ischemic/reperfused hearts, as well as the metabolic phenotype of the failing heart. Furthermore, as energy substrate metabolism has emerged as a novel therapeutic intervention in these cardiac pathologies, this review will describe the mechanistic bases and rationale for the use of pharmacological agents that modify energy substrate metabolism to improve cardiac function in the ischemic and failing heart. This article is part of a Special Issue entitled: Mitochondria and Cardioprotection. © 2011 Elsevier B.V.link_to_OA_fulltex

    Isoproterenol stimulates 5′-AMP-activated protein kinase and fatty acid oxidation in neonatal hearts

    No full text
    Isoproterenol increases phosphorylation of LKB, 5′-AMP-activated protein kinase (AMPK), and acetyl-CoA carboxylase (ACC), enzymes involved in regulating fatty acid oxidation. However, inotropic stimulation selectively increases glucose oxidation in adult hearts. In the neonatal heart, fatty acid oxidation becomes a major energy source, while glucose oxidation remains low. This study tested the hypothesis that increased energy demand imposed by isoproterenol originates from fatty acid oxidation, secondary to increased LKB, AMPK, and ACC phosphorylation. Isolated working hearts from 7-day-old rabbits were perfused with Krebs solution (0.4 mM palmitate, 11 mM glucose, 0.5 mM lactate, and 100 mU/l insulin) with or without isoproterenol (300 nM). Isoproterenol increased myocardial O2 consumption (in J•g dry wt -1•min-1; 11.0 ± 1.4, n = 8 vs. 7.5 ± 0.8, n = 6, P < 0.05), and the phosphorylation of LKB (in arbitrary density units; 0.87 ± 0.09, n = 6 vs. 0.59 ± 0.08, n = 6, P < 0.05), AMPK (0.82 ± 0.08, n = 6 vs. 0.51 ± 0.06, n = 6, P < 0.05), and ACC-β (1.47 ± 0.14, n = 6 vs. 0.97 ± 0.07, n = 6, P < 0.05), with a concomitant decrease in malonyl-CoA levels (in nmol/g dry wt; 0.9 ± 0.9, n = 8 vs. 7.5 ± 1.3, n = 8, P < 0.05) and increase in palmitate oxidation (in nmol•g dry wt-1•min-1; 272 ± 45, n = 8 vs. 114 ± 9, n = 6, P < 0.05). Glucose and lactate oxidation were increased (in nmol•g dry wt -1•min-1; 253±75, n = 8 vs. 63 ± 15, n = 9, P < 0.05 and 246 ± 43, n = 8 vs. 82 ± 11, n = 6, P < 0.05, respectively), independent of alterations in pyruvate dehydrogenase phosphorylation, but occurred secondary to a decrease in acetyl-CoA content and acetyl-CoA-to-free CoA ratio. As acetyl-CoA levels decrease in response to isoproterenol, despite an acceleration of the rates of palmitate and carbohydrate oxidation, these data suggest net rates of acetyl-CoA utilization exceed the net rates of acetyl-CoA generation. Copyright © 2010 the American Physiological Society.link_to_subscribed_fulltex

    Role of the atypical protein kinase Cζ in regulation of 5′-AMP-activated protein kinase in cardiac and skeletal muscle

    No full text
    During metabolic stress, phosphorylation and activation of 5′-AMP-activated protein kinase (AMPK) becomes a major regulator of cellular energy metabolism in heart and skeletal muscle. Despite this, the upstream regulation of AMPK in both heart and muscle is poorly understood. Recent work has implicated the atypical protein kinase Cζ (PKCζ) as a regulator of AMPK in endothelial cells via phosphorylation of LKB1, an upstream AMPK kinase (AMPKK). Our goal was to determine the potential role PKCζ plays in regulating AMPK in cardiac and skeletal muscle. Cultures of H9c2 myocytes (cardiac) and C2C12 myotubes (skeletal muscle) were pretreated with a selective PKCζ pseudosubstrate peptide inhibitor and treated with various AMPK activating agents to determine whether PKCζ regulates AMPK. PKCζ activity was also examined in isolated working rat hearts subjected to ischemia. We show that PKCζ is not involved in regulating threonine 172 AMPK phosphorylation induced by metformin or phenformin in either cardiac or skeletal muscle cells but is involved in 5-aminoimidazole-4-carboxamine-1-β-D-ribofuranoside (AICAR)-induced AMPK phosphorylation in cardiac muscle cells. Activation of PKCζ with high palmitate concentrations is also insufficient to increase AMPK phosphorylation. Furthermore, we show that the ischemia-induced activation of AMPK is not accompanied by increased PKCζ activity. Finally, we show that PKCζ may actually be a downstream target of AMPK in skeletal muscle, since adenoviral expression of a dominant-negative mutant of AMPK prevented metformin- and AICAR-induced phosphorylation of PKCζ. We conclude that PKCζ plays a very minor role in the regulation of AMPK in cardiac and skeletal muscle and may actually be a downstream target of AMPK in skeletal muscle. Copyright © 2009 the American Physiological Society.link_to_subscribed_fulltex

    Inhibition of carnitine palmitoyltransferase-1 activity alleviates insulin resistance in diet-induced obese mice

    Get PDF
    Impaired skeletal muscle fatty acid oxidation has been suggested to contribute to insulin resistance and glucose intolerance. However, increasing muscle fatty acid oxidation may cause a reciprocal decrease in glucose oxidation, which might impair insulin sensitivity and glucose tolerance. We therefore investigated what effect inhibition of mitochondrial fatty acid uptake has on whole-body glucose tolerance and insulin sensitivity in obese insulin-resistant mice. C57BL/6 mice were fed a high-fat diet (60% calories from fat) for 12 weeks to develop insulin resistance. Subsequent treatment of mice for 4 weeks with the carnitine palmitoyltransferase-1 inhibitor, oxfenicine (150 mg/kg i.p. daily), resulted in improved whole-body glucose tolerance and insulin sensitivity. Exercise capacity was increased in oxfenicine-treated mice, which was accompanied by an increased respiratory exchange ratio. In the gastrocnemius muscle, oxfenicine increased pyruvate dehydrogenase activity, membrane GLUT4 content, and insulin-stimulated Akt phosphorylation. Intramyocellular levels of lipid intermediates, including ceramide, long-chain acyl CoA, and diacylglycerol, were also decreased. Our results demonstrate that inhibition of mitochondrial fatty acid uptake improves insulin sensitivity in dietinduced obese mice. This is associated with increased carbohydrate utilization and improved insulin signaling in the skeletal muscle, suggestive of an operating Randle Cycle in muscle. Copyright © 2013 by the American Diabetes Association.link_to_subscribed_fulltex
    corecore