24 research outputs found

    Intra-saccadic displacement sensitivity after a lesion to the posterior parietal cortex

    Get PDF
    Visual perception is introspectively stable and continuous across eye movements. It has been hypothesized that displacements in retinal input caused by eye movements can be dissociated from displacements in the external world using extra-retinal information, such as a corollary discharge from the oculomotor system. The extra-retinal information can inform the visual system about an upcoming eye movement and accompanying displacements in retinal input. The parietal cortex has been hypothesized to be critically involved in integrating retinal and extra-retinal information. Two tasks have been widely used to assess the quality of this integration: double-step saccades and intra-saccadic displacements. Double-step saccades performed by patients with parietal cortex lesions seemed to show hypometric second saccades. However, recently idea has been refuted by demonstrating that patients with very similar lesions were able to perform the double step saccades, albeit taking multiple saccades to reach the saccade target. So, it seems that extra-retinal information is still available for saccade execution after a lesion to the parietal lobe. Here, we investigated whether extra-retinal signals are also available for perceptual judgements in nine patients with strokes affecting the posterior parietal cortex. We assessed perceptual continuity with the intra-saccadic displacement task. We exploited the increased sensitivity when a small temporal blank is introduced after saccade offset (blank effect). The blank effect is thought to reflect the availability of extra-retinal signals for perceptual judgements. Although patients exhibited a relative difference to control subjects, they still demonstrated the blank effect. The data suggest that a lesion to the posterior parietal cortex (PPC) alters the processing of extra-retinal signals but does not abolish their influence altogether

    Time course of spatiotopic updating across saccades

    Get PDF
    Humans move their eyes several times per second, yet we perceive the outside world as continuous despite the sudden disruptions created by each eye movement. To date, the mechanism that the brain employs to achieve visual continuity across eye movements remains unclear. While it has been proposed that the oculomotor system quickly updates and informs the visual system about the upcoming eye movement, behavioral studies investigating the time course of this updating suggest the involvement of a slow mechanism, estimated to take more than 500 ms to operate effectively. This is a surprisingly slow estimate, because both the visual system and the oculomotor system process information faster. If spatiotopic updating is indeed this slow, it cannot contribute to perceptual continuity, because it is outside the temporal regime of typical oculomotor behavior. Here, we argue that the behavioral paradigms that have been used previously are suboptimal to measure the speed of spatiotopic updating. In this study, we used a fast gaze-contingent paradigm, using high phi as a continuous stimulus across eye movements. We observed fast spatiotopic updating within 150 ms after stimulus onset. The results suggest the involvement of a fast updating mechanism that predictively influences visual perception after an eye movement. The temporal characteristics of this mechanism are compatible with the rate at which saccadic eye movements are typically observed in natural viewing

    Bilateral increase in MEG planar gradients prior to saccade onset

    Get PDF
    Every time we move our eyes, the retinal locations of objects change. To distinguish the changes caused by eye movements from actual external motion of the objects, the visual system is thought to anticipate the consequences of eye movements (saccades). Single neuron recordings have indeed demonstrated changes in receptive fields before saccade onset. Although some EEG studies with human participants have also demonstrated a pre-saccadic increased potential over the hemisphere that will process a stimulus after a saccade, results have been mixed. Here, we used magnetoencephalography to investigate the timing and lateralization of visually evoked planar gradients before saccade onset. We modelled the gradients from trials with both a saccade and a stimulus as the linear combination of the gradients from two conditions with either only a saccade or only a stimulus. We reasoned that any residual gradients in the condition with both a saccade and a stimulus must be uniquely linked to visually-evoked neural activity before a saccade. We observed a widespread increase in residual planar gradients. Interestingly, this increase was bilateral, showing activity both contralateral and ipsilateral to the stimulus, i.e. over the hemisphere that would process the stimulus after saccade offset. This pattern of results is consistent with predictive pre-saccadic changes involving both the current and the future receptive fields involved in processing an attended object, well before the start of the eye movement. The active, sensorimotor coupling of vision and the oculomotor system may underlie the seamless subjective experience of stable and continuous perception

    Low-level visual information is maintained across saccades, allowing for a postsaccadic hand-off between visual areas

    Get PDF
    Experience seems continuous and detailed despite saccadic eye movements changing retinal input several times per second. There is debate whether neural signals related to updating across saccades contain information about stimulus features, or only location pointers without visual details. We investigated the time course of low-level visual information processing across saccades by decoding spatial frequency of a stationary stimulus that changed from one visual hemifield to the other due to a horizontal saccadic eye movement. We recorded magnetoencephalography while human subjects (both sexes) monitored the orientation of a grating stimulus, making spatial frequency task-irrelevant. Separate trials, in which subjects maintained fixation, were used to train a classifier, whose performance was then tested on saccade trials. Decoding performance showed that spatial frequency information of the presaccadic stimulus remained present for ∼200 ms after the saccade, transcending retinotopic specificity. Postsaccadic information ramped up rapidly after saccade offset. There was an overlap of over 100 ms during which decoding was significant from both pre- and postsaccadic processing areas. This suggest that the apparent richness of perception across saccades may be supported by the continuous availability of low-level information with a "soft hand-off" of information during the initial processing sweep of the new fixation. Saccades create frequent discontinuities in visual input, yet perception appears stable and continuous. How is this discontinuous input processed resulting in visual stability? Previous studies have focused on presaccadic remapping. Here we examined the time course of processing of low-level visual information (spatial frequency) across saccades with magnetoencephalography. The results suggest that spatial frequency information is not predictively remapped but also not discarded. Instead, they suggest a soft hand-off over time between different visual areas, making this information continuously available across the saccade. Information about the presaccadic stimulus remains available, while the information about the postsaccadic stimulus has also become available. The simultaneous availability of both the pre and postsaccadic information could enable rich and continuous perception across saccades

    Vision while the eyes move: Getting the full picture

    Get PDF
    Visual information is continuously sampled from our environment, even as the eyes move, which helps the visual system create a stable view of the world

    Vision while the eyes move: Getting the full picture

    Get PDF
    Visual information is continuously sampled from our environment, even as the eyes move, which helps the visual system create a stable view of the world

    Spatiotopic updating facilitates perception immediately after saccades

    Get PDF
    As the neural representation of visual information is initially coded in retinotopic coordinates, eye movements (saccades) pose a major problem for visual stability. If no visual information were maintained across saccades, retinotopic representations would have to be rebuilt after each saccade. It is currently strongly debated what kind of information (if any at all) is accumulated across saccades, and when this information becomes available after a saccade. Here, we use a motion illusion to examine the accumulation of visual information across saccades. In this illusion, an annulus with a random texture slowly rotates, and is then replaced with a second texture (motion transient). With increasing rotation durations, observers consistently perceive the transient as large rotational jumps in the direction opposite to rotation direction (backward jumps). We first show that accumulated motion information is updated spatiotopically across saccades. Then, we show that this accumulated information is readily available after a saccade, immediately biasing postsaccadic perception. The current findings suggest that presaccadic information is used to facilitate postsaccadic perception and are in support of a forward model of transsaccadic perception, aiming at anticipating the consequences of eye movements and operating within the narrow perisaccadic time window

    The neurobiological correlates of gaze perception in healthy individuals and neurologic

    Get PDF
    The ability to adaptively follow conspecific eye movements is crucial for establishing shared attention and survival. Indeed, in humans, interacting with the gaze direction of others causes the reflexive orienting of attention and the faster object detection of the signaled spatial location. The behavioral evidence of this phenomenon is called gaze-cueing. Although this effect can be conceived as automatic and reflexive, gaze-cueing is often susceptible to context. In fact, gaze-cueing was shown to interact with other factors that characterize facial stimulus, such as the kind of cue that induces attention orienting (i.e., gaze or non-symbolic cues) or the emotional expression conveyed by the gaze cues. Here, we address neuroimaging evidence, investigating the neural bases of gaze-cueing and the perception of gaze direction and how contextual factors interact with the gaze shift of attention. Evidence from neuroimaging, as well as the fields of non-invasive brain stimulation and neurologic patients, highlights the involvement of the amygdala and the superior temporal lobe (especially the superior temporal sulcus (STS)) in gaze perception. However, in this review, we also emphasized the discrepancies of the attempts to characterize the distinct functional roles of the regions in the processing of gaze. Finally, we conclude by presenting the notion of invariant representation and underline its value as a conceptual framework for the future characterization of the perceptual processing of gaze within the STS
    corecore