4,045 research outputs found

    Efficiency and Competition in Canadian Banking

    Get PDF
    Allen and Engert report on recent research at the Bank of Canada on various aspects of efficiency in the Canadian banking industry. This research suggests that, overall, Canadian banks appear to be relatively efficient producers of financial services and they do not exercise monopoly or collusive-oligopoly power. The authors note the value of continuing to investigate opportunities to improve efficiency and competition in financial services in Canada.

    Are Canadian Banks Efficient? A Canada--U.S. Comparison

    Get PDF
    The authors compare the efficiency of Canada's largest banks with U.S. commercial banks over the past 20 years. Efficiency is measured in three ways. First, the authors study key performance ratios, and find that Canadian banks are as productive as U.S. banks. Second, they investigate whether there are economies of scale in the production functions of Canadian banks and broadly comparable U.S. bank-holding companies (BHCs). They find larger economies of scale for Canadian banks than for the U.S. BHCs, which suggests that Canadian banks are less efficient in terms of scale, and have more to gain in terms of efficiency benefits from becoming larger. Third, the authors measure cost-inefficiency in Canadian banks and in U.S. BHCs relative to the domestic efficient frontier in each country (the domestic best-practice institution). They find that Canadian banks are closer to the domestic efficient frontier than are the U.S. BHCs. Canadian banks have also moved closer to the domestic efficient frontier than have the U.S. BHCs over time. Finally, the authors examine the dispersion in cost-inefficiency found in Canadian banks and attribute some of the dispersion to differences in information and communication technology investment. Comparisons are made with the U.S. BHC experience.Financial institutions

    Decorrelating a compressible turbulent flow: an experiment

    Full text link
    Floating particles that are initially distributed uniformly on the surface of a turbulent fluid, subsequently coagulate, until finally a steady state is reached. This being so, they manifestly form a compressible system. In this experiment, the information dimension D_1, and the Lyapunov exponents of the coagulated floaters, are measured. The trajectories and the velocity fields of the particles are captured in a sequence of rapidly acquired images. Then the velocity sequence is randomly shuffled in time to generate new trajectories. This analysis mimics the Kraichnan ensemble and yields properties of a velocity correlation function that is delta-correlated in time (but not in space). The measurements are compared with theoretical expectations and with simulations of Boffetta et al., that closely mimic the laboratory experiment reported here.Comment: 6 pages, 5 figure

    Moving Difference (MDIFF) Non-adiabatic Rapid Sweep (NARS) EPR of Copper(II)

    Get PDF
    Non-adiabatic rapid sweep (NARS) EPR spectroscopy has been introduced for application to nitroxide-labeled biological samples (Kittell et al., 2011). Displays are pure absorption, and are built up by acquiring data in spectral segments that are concatenated. In this paper we extend the method to frozen solutions of copper-imidazole, a square planar copper complex with four in-plane nitrogen ligands. Pure absorption spectra are created from concatenation of 170 5-gauss segments spanning 850 G at 1.9 GHz. These spectra, however, are not directly useful since nitrogen superhyperfine couplings are barely visible. Application of the moving difference (MDIFF) algorithm to the digitized NARS pure absorption spectrum is used to produce spectra that are analogous to the first harmonic EPR. The signal intensity is about four times higher than when using conventional 100 kHz field modulation, depending on line shape. MDIFF not only filters the spectrum, but also the noise, resulting in further improvement of the SNR for the same signal acquisition time. The MDIFF amplitude can be optimized retrospectively, different spectral regions can be examined at different amplitudes, and an amplitude can be used that is substantially greater than the upper limit of the field modulation amplitude of a conventional EPR spectrometer, which improves the signal-to-noise ratio of broad lines

    Axially Uniform Magnetic Field-Modulation Excitation for Electron Paramagnetic Resonance in Rectangular and Cylindrical Cavities by Slot Cutting

    Get PDF
    In continuous-wave (CW) Electron Paramagnetic Resonance (EPR) a low-frequency time-harmonic magnetic field, called field modulation, is applied parallel to the static magnetic field and incident on the sample. Varying amplitude of the field modulation incident on the sample has consequences on spectral line-shape and line-height over the axis of the sample. Here we present a method of coupling magnetic field into the cavity using slots perpendicular to the sample axis where the slot depths are designed in such a way to produce an axially uniform magnetic field along the sample. Previous literature typically assumes a uniform cross-section and axial excitation due to the wavelength of the field modulation being much larger than the cavity. Through numerical analysis and insights obtained from the eigenfunction expansion of dyadic Green’s functions, it is shown that evanescent standing-wave modes with complex cross-sections are formed within the cavity. From this analysis, a W-band (94 GHz) cylindrical cavity is designed where modulation slots are optimized to present a uniform 100 kHz field modulation over the length of the sample

    Control of Variable Watermilfoil in Bashan Lake, CT with 2,4-D: Monitoring of Lake and Well Water.

    Get PDF
    Variable watermilfoil (Myriophyllum heterophyllum Michx.) has recently become a problem in Bashan Lake, East Haddam, CT, USA. By 1998, approximately 4 ha of the 110 ha lake was covered with variable watermilfoil. In 1999, the milfoil was spot treated with Aquacide®, an 18% active ingredient of the sodium salt of 2,4-D [(2,4-dichlorophenoxy) acetic acid], applied at a rate of 114 kg/ha. Aquacide® was used because labeling regarding domestic water intakes and irrigation limitations prevented the use of Navigate® or AquaKleen®, a 19% active ingredient of the butoxyethyl ester of 2,4-D. Variable watermilfoil was partially controlled in shallow protected coves but little control occurred in deeper more exposed locations. 2,4-D levels in the treatment sites were lower than desired and offsite dilution was rapid. In 2000, the United States Environmental Protection Agency (USEPA) issued a special local need (SLN) registration to allow the use of Navigate ® or AquaKleen® in lakes with potable and irrigation water intakes. Navigate® was applied at a rate of 227 kg/ha to the same areas as treated in 1999. An additional 2 ha of variable watermilfoil was treated with Navigate® in 2001, and 0.4 ha was treated in mid-September. Dilution of the 2,4-D ester formulation to untreated areas was slower than with the salt formulation. Concentrations of 2,4-D exceeded 1000 μg/ L in several lake water samples in 2000 but not 2001. Nearly all of the treated variable watermilfoil was controlled in both years. The mid-September treatment appeared as effective as the spring and early summer treatments. Testing of homeowner wells in all 3 years found no detectable levels of 2,4-D.(PDF contains 8 pages.

    New and Noteworthy Plants of Texas

    Get PDF
    Rhexia alifanus (Melastomataceae) and Rhynchospora inundatum (Cyperaceae), both previously reported in the state, are documented as part of the flora of the state. Ratibida pinnata (Asteraceae), Tradescantia fluminensis (Commelinaceae) and Saccharum ravennae (Poaceae) are reported as new to Texas. Phytologia 92(2): 249-255 (August 2, 2010).Waller Creek Working Grou

    Quasi-isometric classification of non-geometric 3-manifold groups

    Full text link
    We describe the quasi-isometric classification of fundamental groups of irreducible non-geometric 3-manifolds which do not have "too many" arithmetic hyperbolic geometric components, thus completing the quasi-isometric classification of 3--manifold groups in all but a few exceptional cases.Comment: Minor revision (added footnote in the Introduction

    Coupling into Waveguide Evanescent Modes with Applications in Electron Paramagnetic Resonance

    Get PDF
    The use of analytical and numerical techniques in solving the coupling of evanescent modes in a microwave waveguide through slots can be optimized to create a uniform magnetic field excitation on axis within a waveguide. This work has direct applications in Electron Paramagnetic Resonance (EPR) where a 100~kHz time-varying magnetic field is incident on a sample contained in a microwave cavity. Typical cavity designs do not take into consideration the uniformity of the 100~kHz field modulation and assume it to be uniform enough over the sample region from quasi-static principles. This work shows otherwise and uses Ansoft (Pittsburgh, PA) High Frequency Structure Simulator (HFSS; version 12.0) and analytical dyadic Green\u27s functions to understand the coupling mechanisms. The techniques described in this work have shown that electromagnetic modes form in a rectangular and cylindrical waveguide domain even at frequencies a number of orders of magnitude below the waveguide cut-off frequencies. With slot thicknesses very small compared to a wavelength, Born\u27s first approximation must be modified to account for a near field secondary wave. Additionally, mutual coupling between multiple slots has been shown to influence the overall magnetic field profile down the axis of the waveguide and in certain circumstances becomes more complex from interactions outside of the domain of the dyadic Green\u27s functions. A cylindrical TE01U cavity resonant at W-band (94~GHz) is proposed where both the microwave magnetic field and, from this work, the 100~kHz time-varying magnetic field incident on the sample are uniform. This type of resonator is highly desirable in EPR experiments where inhomogeneity of magnetic fields affect signal purity. With the technology outlined in this work, experiments where a uniform field modulation amplitude is swept over the entire spectra to obtain pure absorption is feasible. This work advances the cutting edge of resonator design and enables new experiments to be performed at high field EPR

    Why Do We Care?: A Natural History of Noddings’ Ethical Theory

    Get PDF
    Noddings’ theory of caring, which is nearing its 35th anniversary, has failed to garner the attention of the more classical theories of ethics. This slight may be due to its relative youth, or the historical support for other constructs, but if examined through the lens of evolutionary biology, the validity of Noddings might be tested. Using recent discoveries from the emerging fields of cognitive ethology and neuroscience, I have evaluated whether there exists evolutionary underpinnings for her theory. My analysis makes it apparent that the empathy and altruism required for the practice of caring are as much a product of our natural instincts as our selfish tendencies are. Armed with this information, one must draw the conclusion that the ethic of caring, unlike other ethical theories, is not grounded in a cultural construct of what is right but in a natural one
    • …
    corecore