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Abstract: In continuous-wave (CW) Electron Paramagnetic Resonance (EPR) 

a low-frequency time-harmonic magnetic field, called field modulation, is 

applied parallel to the static magnetic field and incident on the sample. 

Varying amplitude of the field modulation incident on the sample has 

consequences on spectral line-shape and line-height over the axis of the 

sample. Here we present a method of coupling magnetic field into the cavity 

using slots perpendicular to the sample axis where the slot depths are 

designed in such a way to produce an axially uniform magnetic field along the 

sample. Previous literature typically assumes a uniform cross-section and 

axial excitation due to the wavelength of the field modulation being much 

larger than the cavity. Through numerical analysis and insights obtained from 

the eigenfunction expansion of dyadic Green’s functions, it is shown that 

evanescent standing-wave modes with complex cross-sections are formed 

within the cavity. From this analysis, a W-band (94 GHz) cylindrical cavity is 

designed where modulation slots are optimized to present a uniform 100 kHz 
field modulation over the length of the sample. 

Graphical abstract 

 

Keywords: Waveguide evanescent modes, Dyadic Green’s functions, 

Boundary conditions, Eigenvalues and eigenfunctions, Electromagnetic fields, 
Electron paramagnetic resonance 

1. Introduction 

The problem described here has applications in continuous-wave 

(CW) Electron Paramagnetic Resonance (EPR) where low-frequency 

time-harmonic magnetic field, typically 100 kHz, is applied parallel to a 

static magnetic field incident on a microwave cavity. The low-

frequency time-harmonic magnetic field, called field modulation, is 

coupled into the microwave cavity and modulates the resonance 

condition of the sample which offsets the EPR signal from the 

microwave carrier [1]. In order to maximize the field modulation 

incident on a sample the cavity can be designed in four ways: (i) the 
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walls of the cavity are plated with silver that is electrically thin to the 

100 kHz field modulation but at least 10 microwave skin-depths thick, 

(ii) design the cavity as a wire-wound structure, (iii) place the field-

modulation coil inside of the cavity, or (iv) cut slots transverse to the 

cavity microwave current to break up field-modulation eddy-currents 

on the outside of the cavity. 

Previous work from our laboratory focused on field-modulation 

eddy-current analysis of silver-plated graphite resonators and the 

effect of the wall thickness with respect to the fields incident on the 

sample [2]. Here, we focus on how cutting transverse slots into the 

side walls couples the incident field modulation into the cavity and the 

cross-sectional field-modulation profile that is formed. This method is 

used at high frequency EPR (above 94 GHz) where methods ii and iii 

become problematic [3] and [4] or when modulation frequencies are 

increased for use in Electron Nuclear Double Resonance (ENDOR) EPR 

spectroscopy [5]. An illustration of the scheme studied in this work is 

shown in Fig. 1, where the modulation coils are a Helmholtz pair in the 

yz-plane. This configuration is known as a Helmholtz pair. Although 

this method focuses on field modulation it is applicable to ENDOR 

frequencies if the cavity and coil is rotated by 90 degrees around the 

z-axis. 

 
Fig. 1. A cylindrical TE011 cavity resonator (without end-sections) is shown with 
waveguide coupling, field-modulation slots, and coordinate system. The static 

magnetic field and applied field modulation are in the x-direction. The inner diameter 

is t, with radius a  , and the slot depth is ρ. 

In general, the incident field modulation induces an electric field 

within the slots and evanescent modes are formed in the interior. To 
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simplify the problem assume an infinitely long waveguide. EPR 

literature has not focused on the magnetic field cross-section of the 

induced field-modulation modes which has implications on sample line-

shape, spin physics, and quantitative EPR [6]. Past and current 

literature assumes that the 100 kHz field modulation has such a large 

wavelength compared to the resonator body that it can be regarded as 

quasi-static. This work shows that complex cross-section standing-

waves modes form in the cavity and propagate as evanescent modes 

along the z direction. These modes are formed from each slot and the 

interactions between slots. Understanding the coupling mechanism and 

field interactions gives insight into better EPR cavity design. 

We present our results on two typical resonator geometries: a 

rectangular TE102 or cylindrical TE011 cavity. Here, the eigenfunction 

expansion for the dyadic Green’s functions of magnetic types for 

rectangular and circular waveguides excited by a slot with an induced 

electric field induced by an externally homogeneous magnetic field are 

formulated. The eigenfunction expansion of , known as the Ohm-

Rayleigh method, is explicitly used to derive the dyadic Green’s 

function of the magnetic field within the waveguide geometries 

[7] ;  [8]. The magnetic field solution for a single slot along the 

waveguide axis and a cross-sectional profile is presented. Multiple-slot 

geometry derivation is described using a simple summation (zero-

order) of the individual slots and a method of moments (first-order) 

modification for slot-to-slot interactions. Ansys High Frequency 

Structure Simulator (HFSS; v. 17.0, Canonsburg, PA) is utilized to 

both validate and normalize the Green’s function solutions. Good 

agreement is shown between Green’s function and numerical data. The 

combined first-order method of moments dyadic Green’s function 

solution for two slots gives insight on the interactions of multiple slots 

and yields phenomenological guidance in the design of EPR cavities. 

From the insight gained, we describe a cylindrical cavity at W-

band with modulation slots designed with varying depths which 

present a uniform 100 kHz field modulation on axis over the length of 

the sample. Additionally, the cylindrical cavity is a TE01U, where the U 

subscript denotes that the microwave magnetic field is also uniform in 

the z-direction over the sample. It has been shown that the microwave 

magnetic field in a cavity can be made uniform by designing the cavity 
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as a waveguide section at cut-off over the region of interest and 

proper end-sections to tune the cavity to the cut-off frequency [9]; 

[10] ;  [11]. This work presents the first uniform field-modulation and 

microwave magnetic field cavity resonator at W-band. 

2. Methods 

The dyadic Green’s functions are derived using a number of 

references cited in this work and are solved by programming them into 

Wolfram (Champaign-Urbana, IL) Mathematica (version 10.0). 

Mathematica includes pre-defined parallel programming functions such 

as ParallelSum and ParallelTable. Using these functions, solutions to 

the dyadic Green’s functions were accelerated by 76% resulting in 

solution times of approximately 2 min. 

Parameters such as the electric field amplitude and profile within 

the slot are taken from Ansys HFSS solutions and used in the 

formulation of the dyadic Green’s functions. This ensures that the 

dyadic Green’s functions and HFSS solutions are directly comparable. 

Once all solutions are formed, the Green’s function and numerical 

solutions are compared using both visual and analytical techniques. 

Visually, a two dimensional cross-section solution of the solved 

waveguide is plotted in a side-by-side comparison to view contour 

similarities. 

Since this work focuses on an axial 100 kHz magnetic field, one 

must ensure the evanescent roll-off and field amplitude profile are 

properly reflected in the dyadic Green’s function. A root-mean-square 

error (RMSE) function was employed to calculate the residual error 

between the normalized Green’s function and numerical results. Using 

a RMSE is an accurate measurement to compare a calculated model 

(the dyadic Green’s function) to the full-wave 3D simulation (Ansys 

HFSS) and has the unites of amps per meter (A/m). In order to 

calculate the RMSE both equations are discretized into n segments and 

directly compared according to 
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equation(1) 

 

where Hcal and Hsim are the magnetic field calculated by the dyadic 

Green’s functions and the magnetic field simulated by Ansys HFSS, 

respectively. Both the visual and analytical analysis give confidence in 

the dyadic Green’s function solutions to form a resulting insight and 

discussion of this work. 

In order to minimize Mathematica calculation time, the number 

of modes that were solved in the analytical code was varied until the 

solutions had an acceptable convergence. It was found that using ten 

TE and nine TM evanescent modes resulted in more than adequate 

convergence. These results were consistent in rectangular and 

cylindrical waveguides. 

3. Eigenfunction expansion of dyadic Green’s 

functions 

Time-harmonic electric and magnetic fields, e-iωt, are assumed 

throughout the formulation of the problem and solutions. 

3.1. Rectangular waveguide formulation 

The rectangular waveguide is defined in Fig. 2, where  is the 

propagation vector and the electromagnetic modes are bounded by 

0⩽x⩽a and 0⩽y⩽b. The vector wave equation is defined as 

 

equation(2) 

 
where κ and  satisfy the Helmholtz wave equation given the 

appropriate boundary functions. Since a rectilinear coordinate system 

is used, the Cartesian or rectilinear vector wave function is used: 
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equation(3) 

 

where  denotes a constant vector and ψ1 is the characteristic 

function that satisfies the scalar wave equation 

 

∇2ψ1+κ2ψ1=0. 
equation(4) 

 

The function ψ1 is known as the generating function, and  is known 

as the piloting vector. It can be shown that Eq. (3) is a solution of Eq. 

(2) if ψ1 is a solution for Eq. (4). The set of functions obtained, 

denoted by , is 

 

 
equation(5) 

 

Similarly, another set of functions, denoted by , is described by 

 

 
equation(6) 

 

 
where ψ2 does not have to equal ψ1, but both must satisfy Eq. (4). 
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Fig. 2. Definition of the rectangular geometry with a slot thickness of d   and a depth 

of ρ cut into the broad face of the waveguide. The walls of the waveguide are perfect 

electric conductor (PEC) material and have a cross-section of a by b. The waveguide 
wall thickness is not finite, but propagation is assumed instantaneous. 
 

Using the separation of variables method, the general solution 

to the scalar wave equation in rectangular coordinates can be written 

as  

 

equation(7) 

ψ=[Acos(kxx)+Bsin(kyy)]×[Ccos(kyy)+Dsin(kxx)]eihz,  
 

where  and bounded by 0⩽x⩽a,0⩽y⩽b and -∞<z<∞. 

Here, h   denotes the propagation constant of the wave in  

coordinate and kx and ky denote standing waves in  and , 

respectively. 

The vector wave functions, both  and , satisfy the vector 

Dirichlet boundary conditions 

equation(8) 

 
 

equation(9) 

  

 
on the waveguide walls. 

Since the propagation direction, or piloting vector, is in the  

direction,  is replaced by . Then the complete  and  functions, 

which satisfy the vector Dirichlet condition, are 

equation(10) 
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equation(11) 

  
 

 
The subscript “o” is used to denote “odd,” and the subscript “e”, 

“even.” It is understood that odd functions with m or n equal to zero 

are null modes. The vector functions that properly represent the 

magnetic field in a rectangular waveguide can be found by 

 

equation(12) 

  

 
equation(13) 

  

 

The functions  and  satisfy the vector Neumann 

condition on the boundary, mainly, 

 

equation(14) 

  

 
equation(15) 
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For this problem, we use the Neumann boundary conditions for 

formulating the magnetic field solutions. 

Using the Ohm-Rayleigh method, the normalization factor is 

determined for the functions 

equation(16) 

 
 

where the δ0 function denotes the Kronecker delta function, which is 1 

if m=n and 0 otherwise. The null modes of  are included in this 

normalization since when m or n   is zero, has a normalization 

of zero. Similarly, the normalization of the  function can be found 

by using 

 

equation(17) 

 

Once the vector wave functions are properly defined, the dyadic 

Green’s function can be constructed. The eigenfunctions defined in  

and  allow for the complete vector solution for the magnetic field in 

the waveguide. 

3.2. The method of  

The method of  uses the Ohm-Rayleigh method to derive the 

magnetic dyadic Green’s function of the second kind (Neumann 

boundary) for a rectangular waveguide using the vector wave 

equations [7]; [8]; [12] ;  [13]. The dyadic Green’s function, denoted 

, must satisfy the equation 
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equation(18) 

 

 
 

equation(19) 

 

Using the Ohm-Rayleigh method, an eigenvalue expansion is 

derived for the source function using the functions 

introduced earlier. The functions  and  are used for the 

magnetic field solutions and to satisfy the Neumann boundary 

conditions. Expanding the source function using the vector wave 

functions yields 

equation(20) 

 
 

where it can be shown that 

 

equation(21) 

 
 

equation(22) 

 

Since the rectangular waveguide extends to infinity in  and since the 

integrand has two poles at , because k is complex, 

the solution meets the requirements of the Jordan lemma in the theory 

of complex variables [14]. Finally, the Green’s function for the 

magnetic field satisfying the boundary condition of the second type 

can be written as 
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equation(23) 

 
 

where z>z′ corresponds to ± and z<z′ corresponds to ∓ for kg and 

 

equation(24) 

 

 
equation(25) 

 

 
By integrating over the closed surface of the magnetic current source, 

, on the surface of the waveguide walls such that 

 

equation(26) 

 

the solution to the magnetic field using  is found. The volume 

integral of the Green’s function vanishes because the excitation is on 

the waveguide walls. 

The solution to Eq. (26) is valid everywhere within the domain 

except at the source surface. In this work, Eq. (26) is exclusively used 

to find the magnetic field in a rectangular waveguide. This derivation is 

necessary not only for full understanding of the solution, but also 

because previous derivations, in both Tai [7] ;  [8] and Ho et al. [15], 

derive solutions for sources within the waveguide, not on the 

waveguide walls. 

3.3. Cylindrical waveguide formulation 

Formulation of the cylindrical waveguide, depicted in Fig. 3 

follows the same steps as the rectangular waveguide [7] ;  [8]. In this 

case the characteristic equation uses cylindrical Bessel functions as the 

eigenfunction expansions. Again,  is the propagation vector and the 
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cylindrical modes are bounded by 0⩽r⩽a. The characteristic wave 

equation is then determined by 

equation(27) 

 

 
equation(28) 

 
 

where, a   is the radius of the cylindrical waveguide and γmn and  

are the zeros associated with the Bessel function of the first kind or 

the derivative of the Bessel function of the first kind, respectively. The 

subscript ’e  ’ denotes an even function where cos(nϕ) is used and the 

subscript ’o  ’ denotes an odd function where sin(nϕ) is used. The 

wave constant for the two wave equations is defined as 

 

equation(29) 

 
 

equation(30) 

 
 

Then the cylindrical vector wave functions can be defined by 

 

equation(31) 

 

 
equation(32) 

 

 
where both satisfy vector Dirichlet boundary conditions at r=a. Using 

the Ohm-Rayleigh method and the method of  as described in the 
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previous section the dyadic Green’s function for the cylindrical 

waveguide can be expressed as 

 

equation(33) 

 

 
where z>z′ corresponds to ± and z<z′ corresponds to ∓ for kg and 

 

equation(34) 

 

 
equation(35) 

 

 
Additionally the constants cγ

′ and cγ are defined as 

 

equation(36) 

 

 
equation(37) 

 

 
Finally, the scaling constants Iγ

′ and Iγ are defined as 

 

equation(38) 

 

 
equation(39) 
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Fig. 3. Definition of the cylindrical geometry with a slot thickness of d   and a depth of 

ρ cut into the broad face of the waveguide. The walls of the waveguide are PEC 

material and have a radius of a. The waveguide wall thickness is not finite, but 
propagation is assumed instantaneous. 

Integrating the magnetic current source, , on the closed 

surface of the waveguide walls produces the solution, 

equation(40) 

 

3.4. Single-slot formulation 

The incident magnetic field, , is applied to the outside of the 

waveguide where an eddy current, , is formed on the outside surface 

by Faraday’s law. When a slot is present the eddy current produces 

two fields: (i) a field anti-parallel to , reducing the surface current 

on the face of the waveguide everywhere but at the edges, and (ii) a 

field parallel to  along the geometry of the slot. An electric field 

across the gap in the  direction is produced by this current potential. 

The slot thickness, d  , and slot depth, ρ, are the two variables 

used to create the magnitude and shape of the electric field in the gap, 

primarily . Boundary conditions require that  on the 

surface. This requirement produces a half-sinusoidal shape around a 

2.5-dimensional1 slot length, with zero on the depth face. The electric 

field magnitude and direction are characterized using Ansys HFSS 

simulations. The field profile and amplitude is used in the calculation of 

the magnetic current source. 

Since the wavelength of this problem is much greater than the 

size of the slot and the material is PEC, it is assumed that there is no 
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attenuation or phase differences in the transmission of the electric field 

from the outside to the inside of the waveguide. This assumption 

allows for the exchange of the electric field in the slot to a magnetic 

current on the inside surface of the waveguide, defined by 

equation(41) 

 

 
where  is a normal vector facing into the waveguide on the interior 

surface. Finally, the equivalent source can be found by using the 

equivalence principle and image theory. 

Characterization of the surface magnetic current source is 

illustrated in Fig. 4. Using a unit-step function the width of the cut slot 

as predicted by Born’s first approximation [16], shown as a light 

dashed line, was found to be inadequate due to a secondary wave 

formed around the slot. It was found that creating a unit-step function 

2.5 times larger than the slot width, shown as a light solid line, was 

needed to minimize the error on axis. However, a surface magnetic 

current in the shape of a unit function does not make physical sense. 

Therefore, in the formulation of the source, a Gaussian shaped surface 

magnetic current, , was characterized, illustrated in Fig. 4 as 

dashed black lines. 

 
Fig. 4. Characterization of magnetic surface current source. A unit-step function is 
used as the surface magnetic current which fills the exact slot thickness (light dashed) 
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as predicted by Born’s first approximation. To minimize error, the unit-step function 

was made wider than the actual slot (light solid). However, surface magnetic current 
actually has a Gaussian shape (black dashed) that extends past the slot thickness. 

Using a Gaussian shape gives physical insight to the distribution 

of the electric field and, therefore, the surface magnetic current source 

from the slot. Since the distribution of the surface magnetic current 

source is more complicated than a simple unit-step function, the 

equivalent surface magnetic current is replaced with a single magnetic 

current filament source, , located on the surface of the waveguide 

walls along the center of the slot. The solution to the problem is then 

solved by performing a posterior product of the surface magnetic 

current filament and Eq. (26) for a rectangular waveguide, and, 

likewise, using Eq. (40) for a cylindrical waveguide. To account for the 

distribution of magnetic current, the convolution of the solution with a 

properly characterized Gaussian function, Mconv, such as one described 

in Fig. 4, is used to describe the primary and secondary waves 

associated with the slot. Using the convolution, a complete solution 

can be formed. 

4. Results 

4.1. Single-slot rectangular results 

The rectangular geometry used for the formulation of the 

solution is illustrated in Fig. 2. The lowest order mode in the 

rectangular waveguide with the dimensions 2.54 ×× 1.27 mm is the 

TE10 with a cut-off frequency of 59.055 GHz, which makes 100 kHz 

well below propagation cut-off. The propagation of all modes coupling 

into the waveguide are then evanescent. 

A two-dimensional contour plot of the evanescent mode 

solutions using the dyadic Green’s functions and the convolution 

techniques are shown in Fig. 5. The contour plots are of the 

normalized magnetic field magnitude (Habs shown in Fig. 5A) and the 

individual vector components: Hx,Hy, and Hz; Figs. 5B, C, and D, 

respectively. The slot source was a single slot cut into the right face of 

the waveguide in the -direction with a slot thickness, d, of 

0.05 mm. For the initial results the slot depth was half the waveguide 

thickness; ρ is 0.625 mm. The slot cut is indicated in all figures as a 
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black outline. The applied magnetic field is uniform and in the  

direction. 

 

 
Fig. 5. Rectangular waveguide solutions using dyadic Green’s functions. Slot cut 50% 
deep from right side. The magnetic field profile components are (A) magnetic field 

magnitude, (B) -component, Hx, (C) -component, Hy, (D) -component, Hz. 

Rectangular waveguide solutions using Ansys HFSS. The magnetic field profile 

components are (E) magnetic field magnitude, (F) -component, Hx, (G) -

component, Hy, (H) -component, Hz. Each contour represents a 10% change in 

amplitude. 

The results are visually compared to Ansys HFSS data, shown in 

Fig. 5E-H. Good agreement between Green’s function and numerical 

results is shown. The results from the dyadic Green’s functions show a 

slightly larger gradient of magnetic field in the -direction. 

4.2. Solution along the -axis 

Confidence in the magnetic field profile along the axis of the 

sample is crucial to the analysis of single- and multiple-slot 

configurations. Comparison of Ansys and dyadic Green’s function 

solutions down the -axis result in a RMSE of 0.307, using Eq. (1). 

The results are plotted in Fig. 6 where the dyadic Green’s function 
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solution using the magnetic surface current filament and convolution 

technique is plotted alongside Ansys HFSS solutions. The upward trend 

of the magnetic field at the edges of the solution on axis is an artifact 

of the convolution. The last 0.5 mm on each end are ignored in the 

RMSE calculation. Without the artifacts the solution should decay at an 

exponential rate and this rate is used as the criteria for the 

comparison. 

 
Fig. 6. Magnetic field profile for the rectangular waveguide -axis. Plotted is the 

Ansys HFSS solutions (dashed) and the dyadic Green’s function solution using the 
magnetic surface current filament and convolution technique, Ms (solid). An RMSE of 
0.307 was calculated. 

4.3. Single-slot cylindrical results 

The cylindrical geometry used for the formulation of the solution 

is illustrated in Fig. 3. The radius a is 3.175 mm and the center of the 

slot is located on the xy -plane with a depth, ρ, of 3.175 mm and a 

thickness, d, of 0.05 mm. The lowest order mode that propagates in 

the cylindrical waveguide with a radius of 3.175 mm is the TE11 with a 

cut-off frequency of 55.338 GHz, which makes 100 kHz well below 

http://dx.doi.org/10.1016/j.jmr.2016.11.014
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S109078071630249X#f0015
http://www.sciencedirect.com/science/article/pii/S109078071630249X#gr6


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Journal of Magnetic Resonance, Vol 274 (January 2017): pg. 115-124. DOI. This article is © Elsevier and permission has 
been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission for this article 
to be further copied/distributed or hosted elsewhere without the express permission from Elsevier. 

20 

 

propagation cut-off. The propagation of all modes coupling into the 

waveguide are then evanescent. 

Similar to the rectangular results, a sinusoidal electric field in 

the -direction is used to create the magnetic current around the slot. 

A two-dimensional contour plot of the evanescent mode 

solutions using the dyadic Green’s functions and the convolution 

techniques described previously, are shown in Fig. 7. The contour plots 

are of the normalized magnetic field magnitude (Habs shown in Fig. 7A) 

and the individual vector components: Hx,Hy, and Hz; Figs. 7B, C, D, 

respectively. The slot source was a single slot cut into the right face of 

the waveguide in the -direction with a slot thickness, d, of 

0.05 mm. For the initial results the slot depth was half the waveguide 

thickness, ρ is 3.175 mm. The slot cut is indicated in all figures as a 

black outline. The applied magnetic field is uniform and in the -

direction. 

 
Fig. 7. Cylindrical waveguide solutions using dyadic Green’s functions. Slot cut 50% 
deep from right side. The magnetic field profile components are the (A) magnetic field 

magnitude, (B) -component, Hx, (C) -component, Hy, (D) -component, Hz. 

Cylindrical waveguide solutions using Ansys HFSS. The magnetic field profile 

components are (E) magnetic field magnitude, (F) -component, Hx, (G) -

component, Hy, (H) -component, Hz. Each contour represents a 10% change in 

amplitude. 

The results are visually compared to Ansys HFSS data, shown in 

Fig. 7E-H. Good agreement between Green’s function and numerical 

results are shown. The results from the dyadic Green’s functions show 

a slightly larger gradient of magnetic field in the -direction. 
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4.4. Solution along the -axis. 

Comparison of Ansys and dyadic Green’s function solutions 

down the -axis result in a RMSE of 0.221, using Eq. (1). The results 

are plotted in Fig. 8, where the dyadic Green’s function solution using 

the magnetic surface current filament and convolution technique is 

plotted along side the Ansys HFSS solutions. Again, the upward trend 

of the magnetic field at the edges of the solution on axis is a 

byproduct of the convolution. The ends are ignored in the RMSE 

calculation. 

 
Fig. 8. Magnetic field profile for the cylindrical waveguide -axis. Plotted is the Ansys 
HFSS solutions (dashed) and the dyadic Green’s function solution using the magnetic 
surface current filament and convolution technique, Ms (solid). An RMSE of 0.221 was 

calculated. 

5. Discussion 

5.1. Multiple-slot formulation 

Solutions between Ansys HFSS single-slot simulations and 

dyadic Green’s function solutions show good agreement for both 

cylindrical and rectangular results. Confidence in the magnetic field 
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cross-section and amplitude along the axis is presented in the previous 

sections. From these single-slot solutions a multiple-slot formulation 

can be devised. Two methods are used in the formulation of the 

interactions between multiple slots: simple summation (superposition) 

of the slot fields and a first-order moment method to include mutual 

coupling of evanescent fields. The multiple-slot calculations were 

performed with the rectangular waveguide geometry but are also valid 

for cylindrical results. 

5.2. Summation of multiple-slot fields 

In the formulation of multiple slots, the dyadic Green’s function 

were modified to displace the feed point in the -direction. This is 

done by changing the z′ variable in the dyadic Green’s function in Eq. 

(26) or Eq. (40). Two solutions are then created at a ±z′ distance 

resulting in slot spacings of 5.08 mm, 2.54 mm, and 0.508 mm. The 

second slot depth, ρ2, is then varied as 0.3t, 0.5t, and 0.7t. These 

depths were chosen because they are practical depths in construction 

of field modulation slots. The solutions were simply summed together 

to create the initial zero-order results. 

In the Ansys HFSS simulation, both slots were excited by a 

uniform magnetic field from outside the domain and the slots were 

varied. The results were then compared visually and the RMSE value 

was calculated using Eq. (1). 

If the two slots act independently, a simple summation of the 

slot fields should completely describe the multiple-slot system. 

However, the Ansys HFSS calculations do not agree with the zero-

order dyadic Green’s solution. Table 1 illustrates a number of 

experimental comparisons between Ansys HFSS and dyadic Green’s 

function solution. 

Table 1. RMSE values for simple summation formulation, RMSEs, and 

moment method, RMSEm, are directly compared for multiple slots of different 

depths. 

Distance [mm] ρ1/tρ1/t ρ2/tρ2/t RMSEs RMSEm 

5.08 0.5 0.3 0.626165 0.508758 

5.08 0.5 0.5 0.501948 0.404064 

5.08 0.5 0.7 0.543898 0.781346 
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Distance [mm] ρ1/tρ1/t ρ2/tρ2/t RMSEs RMSEm 

2.54 0.5 0.3 0.683480 0.489288 

2.54 0.5 0.5 0.639576 0.427618 

2.54 0.5 0.7 0.535444 1.026530 

0.508 0.5 0.3 1.181602 0.415276 

0.508 0.5 0.5 1.372851 1.153870 

0.508 0.5 0.7 1.331543 2.894110 

0.254 0.5 0.3 2.29347 0.478667 

0.254 0.5 0.5 2.30797 1.087350 

0.254 0.5 0.7 2.24897 3.034104 

When the solutions are “far enough” apart,2 they have little 

interaction. This is shown in Table 1 under RMSEs, where the slots are 

5.08 mm apart and the RMSE for the slots with the same depth are 

comparable to the single-slot RMSE of 0.307. The majority of the 

errors arise from the region between the slots. It appears that the 

effective roll-off between the slots is shifted. Increasing the number of 

modes in the dyadic Green’s function solution had no effect in reducing 

the error between the slots. 

As the slots are moved closer together to 2.54 mm apart the 

interactions of the slots start to change. In general, the RMSE rises 

only slightly but the region containing error is significantly different. 

More error arises from the region at the slots, which has the largest 

effect on the RMSE and the validity of the solution. Finally, when the 

slots become close the amplitude of the Ansys HFSS solutions are 

significantly smaller than the simple summation of the slot fields from 

the dyadic Green’s functions. 

The summation of the slots only takes into account the 

magnetic field from the excitation of the slots. Since the physical slots 

were removed in the formulation of the dyadic Green’s functions, the 

mutual coupling that may occur between the slots is neglected. Mutual 

coupling is defined as the interactions between the two slots that are 

not accounted for by the excitation of the individual slots. 

The mutual coupling between multiple slots must be accounted 

for in order to reduce the error between the Ansys HFSS and dyadic 

Green’s function solutions. In this work, a first-order moment method 
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is implemented in order to characterize and fully account for the 

phenomenon of mutual coupling. 

5.3. Moment method 

The moment method is a way to describe the total response 

(caused by two or more stimuli) at a given point as the sum of the 

individual responses and the sum of the responses on each stimuli 

caused by the other stimuli. In this work the magnetic field is found to 

be 180 degrees out of phase from the primary magnetic field of the 

second slot, reducing the overall effect of the slot solution. At the 

same time the reciprocal problem is occurring. 

The moment method used is said to be of “first-order”. In this 

work, first-order is described as the summation of the independent 

slots (zero-order) and the mutual-coupling interaction between slots 

(first-order). Standard S-parameter notation will be used to describe 

the mutual coupling where the second index is reserved for the 

excitation and the first for the position. Thus  describes the 

magnetic field at slot one, excited by slot two. 

The moment method has been used in the literature as an 

evaluation technique to calculate the mutual coupling between micro-

strip antenna arrays [17]; [18]; [19] ;  [20]. Using reciprocity, a 

voltage is applied on one slot and a current is measured across the 

other slot. This work follows the methods described by Pan and Pozar, 

[17] ;  [18] respectively. 

In Refs. [17] ;  [18] a voltage reflection current is defined on 

the surface from an incident field driven by the ith slot onto the jth 

slot. The reflection magnetic current is defined as 

equation(42) 

  

where  is the jth filament magnetic current centered at the position 

of the jth slot calculated from the i  th source,  is the expected 

modal solution of the magnetic field from the dyadic Green’s functions 

located at the j  th slot and Ω is the 2.5-dimensional line around the 
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waveguide walls centered at the jth slot. From here the magnetic field 

driven from the ith slot at the jth slot is calculated by 

 

equation(43) 

  

Since this work uses only two slots, the magnetic current can be 

solved directly using the dyadic Green’s functions. Knowing the 

magnetic field from the first slot, the magnetic current on the second 

slot can be calculated. If more slots were being considered a matrix 

would be created taking into effect all slot interactions. The total 

solution is then the summation of the slots plus the first-order 

solution, such that 

equation(44) 

  

 

It should be noted that  and  result in magnetic fields 

that oppose the superimposed fields, yielding a lower total magnetic 

field as expected. 

Using the moment method, solutions were calculated for slot 

distances of 5.08 mm, 2.54 mm and 0.508 mm. In these calculations 

the first slot depth, ρ1ρ1, constant at 0.5t   while the second slot 

depth, ρ2, is varied between 0.3t, 0.5t, and 0.7t. The results of these 

calculations can be found in Table 1 under RMSEm. 

Table 1 shows some mixed results between the RMSE of the 

simple summation solutions, RMSEs, and the first-order method 

moment, RMSEm. For variations of slot distance and slot depths of 0.3t 

and 0.5t, the moment method decreased the RMSE as expected. The 

issue arises in the results where the second slot depth was 0.7t, where 

in all cases the RMSE increased. 

The issue of the increased RMSE in the case where the second 

slot depth is 0.7t is not due to the accuracy of the moment method 

instead, it is due to changes in the system from outside of the domain. 

To test this hypothesis the two slots were moved to 0.254 mm apart 

which would increase mutual coupling. If the anomaly is from the 
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moment method, then increasing the mutual coupling should increase 

the error. This is shown not to be the case by observing Table 1. Here 

the exact phenomenon of an increasing RMSE occurs at the second 

slot depth of 0.7t at a distance of 0.254 mm while the other two slot 

depths are improved. 

Using Ansys simulations, a strong mutual coupling between the 

two slots and a relatively unperturbed surface current located on the 

opposite side of the slot is observed for the 0.3t and 0.5t cases. 

However, in the case of 0.7t a different phenomenon, not included 

within the domain, is seen in the interaction of the currents on the face 

of the waveguide. From this interaction the mutual coupling decreases 

resulting in an inaccurate moment method interaction. 

If each slot were driven from independent sources, the addition 

of the slot magnetic fields and their first-order interactions would be 

sufficient to obtain the field profile down axis. Instead, all slots are 

driven with a single incident wave and the electric field in the slot is 

dependent on eddy currents formed by scattered waves outside the 

domain. The results are non-trivial under some conditions. With this 

complexity arising from slot-to-slot interaction outside the domain, it 

would prove difficult to fully express in an Green’s function solution for 

slot depths deeper than 0.6t. 

5.4. Field modulation cross-section incident on sample 

In EPR, only the components of  parallel to the static magnetic 

field create the field modulation effect. In the presented geometry it is 

the -component. Due to the standing-wave modes formed by the slot 

excitation, the Hx component of the magnetic field does not have a 

uniform cross-section, shown in Fig. 9. 
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Fig. 9. EPR (A) cylindrical TE011 cavity and (B) rectangular TE102 cavity showing the 

100 kHz -component, Hx, solutions using dyadic Green’s functions. The solid line 

illustrates the slot and the dashed line illustrates a capillary or flat-cell sample placed 
in the cavity, respectively. 

The cross-sectional field modulation profile for a cylindrical TE011 

cavity is shown in Fig. 9A. Here a capillary outline is placed in the 

center of the cavity and shows a 10% gradient of magnetic field 

through the sample for a slot with a depth of 0.5t. Further studies 

involving variation of the rotation of the slot cut may yield a more 

uniform cross-section. 

In a rectangular TE102 cavity only one slot can be cut in the 

center of the cavity in the x-plane. Otherwise microwave leakage will 

occur. The cut in the y-plane, as shown in Fig. 2, does not allow rf 

propagation without rf leakage. However, the use of a uniform rf field 

rectangular cavity TEU02 allows for multiple slots to be cut in the x-

plane without degradation of the mode [9]; [10] ;  [11]. Solutions for 

the -component with a cut in the x-plane are straightforward and 

shown in Fig. 9B. 

If a flat-cell sample of some arbitrary thickness, shown as a 

dashed line, were to be placed down the axis of the rectangular 

microwave cavity, it is clear that the differential field modulation 

amplitude would vary in both  and  directions, along with the 

evanescent roll off in -directions. This is not apparent in current EPR 

literature, where the quasi-static field is assumed to create modes that 

are uniform over the cross-section of the sample. 

5.5. W-band cylindrical TE01U cavity with uniform 

100 kHz field modulation profile 
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The uniformity of the rf magnetic field in a microwave cavity, 

where typically a cavity with modulation slots has a cosine dependence 

in the propagation direction, has been discussed in great detail [9]; 

[10] ;  [11]. The geometry of a resonator designed for W-band 

cylindrical TE01U cavity with over-sized end sections is described in 

Table 2 and a cross section is shown in Fig. 10A. This design uses two 

metallic screws as sample shields placed in the end-sections to more 

abruptly stop the incident microwave magnetic field. These screws also 

allow for frequency adjustment to match the cutoff section. Microwave 

magnetic field uniformity is 85% in 6 mm region of interest. 

Table 2. Design parameters for the W-band cylindrical TE01U with uniform 

100 kHz field modulation. 

Feature description Dimension 

Outer diameter, a 6.35 mm 

Inner diameter 3.96 mm 

End section height 1.72 mm 

End section diameter 5.59 mm 

Modulation slot thickness 0.05 mm 

Modulation slot depth, ρ 0.56t, 0.56t, 0.64t, 0.48t, 

(symmetric about center) 0.56t, 0.76t, 0.56t 

 

 

 
Fig. 10. (A) Geometry of the W-band cylindrical TE01U with uniform rf field and 

designed slots to produce uniform 100 kHz incident along the axis of the sample. Slots 
are shown in black along the 6 mm region of interest. Using Ansys HFSS, (B) 

Normalized 100 kHz -component, Hx, magnetic field plot of the optimized slot 

geometry (solid) and 0.75 ρ uniform slot depth (dashed). 

Field modulation slots are cut transverse to the magnetic field in 

a pattern optimized to exhibit a uniform 100 kHz field modulation 

along the axis of the sample. This pattern was solved by hand with 
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insights gained from the formation of the dyadic Green’s functions. The 

design methodology is to start with a 0.5t uniform slot depth and 

adjust the top two (symmetric with bottom) slots till the field exceeds 

the center. Then the central slots are adjusted to accommodate. This 

is not a unique solution. Future work could automate this process 

using the first-order methods of moments dyadic Green’s functions as 

an initial optimization. 

Ansys HFSS simulations of this geometry are shown in Fig. 10B 

(solid) and compared to the field modulation profile of slots with a 

uniform depth of 0.7t (dashed). The field modulation excitation of the 

optimized slot geometry is designed with less than 1% fluctuations 

over the 6 mm region of interest. 

6. Conclusion 

Dyadic Green’s functions have been useful in understanding 

evanescent field coupling to slots cut into waveguide walls. By using a 

Gaussian function instead of a unit-step function, as assumed by 

Born’s first approximation, near-field secondary wave effects are 

included to produce an accurate profile of the magnetic current inside 

a waveguide for slots much smaller than a wavelength. 

Interactions arising from multiple slots can be understood using 

a combination of simple summation and first-order mutual coupling 

techniques to account for the slot interaction. However, the Green’s 

function methods are limited due to eddy current changes outside the 

domain that cannot be accounted for directly in the dyadic Green’s 

function solution for some conditions. For final evaluation, Ansys HFSS 

solutions have proven to be accurate by simulating the full geometry. 

Electromagnetic modes forming from the 100 kHz time-varying 

source are shown to have a complex cross-section at the sample which 

has not been previously documented in EPR literature. With an 

electromagnetic cross-section that is not uniform, the placement of the 

sample and overall sample geometry will have an effect on the 

magnetic field modulation applied to the sample. Additionally, this 

work shows the feasibility of using different slot depths or slot angles 

to change the interior magnetic field profile to be more favorable for 
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EPR spectroscopy. A design of a cylindrical TE01U cavity is presented 

with both uniform rf field and 100 kHz modulation field. 
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