1,216 research outputs found

    Influence of Natural Inshore and Offshore Thermal Regimes on Egg Development and Time of Hatch in American lobsters, Homarus americanus

    Get PDF
    Some egg-bearing (ovigerous) American lobsters (Homarus americanus) make seasonal inshore-to-offshore movements, subjecting their eggs to different thermal regimes than those of eggs carried by lobsters that do not make these movements. Our goal was to determine if differences in thermal regimes influence the rate of egg development and the subsequent time of hatch. We subjected ovigerous lobsters to typical inshore or offshore water temperatures from September to August in the laboratory (n = 8 inshore and 8 offshore, each year) and in the field (n = 8 each, inshore and offshore), over 2 successive years. Although the rate of egg development did not differ significantly between treatments in the fall (P ∼ 0.570), eggs exposed to inshore thermal regimes developed faster in the spring (P \u3c 0.001). “Inshore” eggs hatched about 30 days earlier (mean = 26 June) than “offshore” eggs (mean = 27 July), and their time of development from the onset of eyespot to hatch was significantly shorter (inshore = 287 ± 11 days vs. offshore: 311.5 ± 7.5 days, P = 0.034). Associated growing degree-days (GDD) did not differ significantly between inshore and offshore thermal treatments (P = 0.061). However, eggs retained by lobsters exposed to offshore thermal regimes accumulated more GDD in the winter than did eggs carried by inshore lobsters, while eggs exposed to inshore temperatures acquired them more rapidly in the spring. Results suggest that seasonal movements of ovigerous lobsters influence the time and location of hatching, and thus the transport and recruitment of larvae to coastal and offshore locations

    A Noninvasive Method For In situ Determination of Mating Success in Female American Lobsters (Homarus americanus)

    Get PDF
    Despite being one of the most productive fisheries in the Northwest Atlantic, much remains unknown about the natural reproductive dynamics of American lobsters. Recent work in exploited crustacean populations (crabs and lobsters) suggests that there are circumstances where mature females are unable to achieve their full reproductive potential due to sperm limitation. To examine this possibility in different regions of the American lobster fishery, a reliable and noninvasive method was developed for sampling large numbers of female lobsters at sea. This method involves inserting a blunt-tipped needle into the female\u27s seminal receptacle to determine the presence or absence of a sperm plug and to withdraw a sample that can be examined for the presence of sperm. A series of control studies were conducted at the dock and in the laboratory to test the reliability of this technique. These efforts entailed sampling 294 female lobsters to confirm that the presence of a sperm plug was a reliable indicator of sperm within the receptacle and thus, mating. This paper details the methodology and the results obtained from a subset of the total females sampled. Of the 230 female lobsters sampled from George\u27s Bank and Cape Ann, MA (size range = 71-145 mm in carapace length), 90.3% were positive for sperm. Potential explanations for the absence of sperm in some females include: immaturity (lack of physiological maturity), breakdown of the sperm plug after being used to fertilize a clutch of eggs, and lack of mating activity. The surveys indicate that this technique for examining the mating success of female lobsters is a reliable proxy that can be used in the field to document reproductive activity in natural populations

    A Noninvasive Method For In situ Determination of Mating Success in Female American Lobsters (Homarus americanus)

    Get PDF
    Despite being one of the most productive fisheries in the Northwest Atlantic, much remains unknown about the natural reproductive dynamics of American lobsters. Recent work in exploited crustacean populations (crabs and lobsters) suggests that there are circumstances where mature females are unable to achieve their full reproductive potential due to sperm limitation. To examine this possibility in different regions of the American lobster fishery, a reliable and noninvasive method was developed for sampling large numbers of female lobsters at sea. This method involves inserting a blunt-tipped needle into the female\u27s seminal receptacle to determine the presence or absence of a sperm plug and to withdraw a sample that can be examined for the presence of sperm. A series of control studies were conducted at the dock and in the laboratory to test the reliability of this technique. These efforts entailed sampling 294 female lobsters to confirm that the presence of a sperm plug was a reliable indicator of sperm within the receptacle and thus, mating. This paper details the methodology and the results obtained from a subset of the total females sampled. Of the 230 female lobsters sampled from George\u27s Bank and Cape Ann, MA (size range = 71-145 mm in carapace length), 90.3% were positive for sperm. Potential explanations for the absence of sperm in some females include: immaturity (lack of physiological maturity), breakdown of the sperm plug after being used to fertilize a clutch of eggs, and lack of mating activity. The surveys indicate that this technique for examining the mating success of female lobsters is a reliable proxy that can be used in the field to document reproductive activity in natural populations

    Behavioral Enhancement of Onshore Transport by Postlarval Caribbean Spiny Lobster (Panulirus Argus)

    Get PDF
    We conducted a series of laboratory experiments to examine the orientation, settlement, and metamorphosis of Caribbean spiny lobster (Panulirus argus) pueruli (postlarvae) in response to cues characteristic of their nursery in back-reef tropical lagoons. Our results suggest that pueruli were attracted to coastal water sources and the metabolites of red macroalgae (Laurencia spp.) when compared with oceanic water and artificial seawater treatments. Pueruli were not attracted to waterborne cues from sea grass, were repelled by hypersaline or hyposaline water, and discerned coastal cues from water collected as far as 30 km offshore from the reef. We also conducted experiments to examine the settlement behavior of pueruli in response to different substrates and hydrostatic pressures. Pueruli only settled at pressures equivalent to depths \u3c5 m, which is where most settlement occurs in the field; settlement behavior was further enhanced by the presence of red macroalgae. Coastal water or artificial seawater containing red macroalgae metabolites hastened puerulus development and molting to the benthic juvenile stage by 20-30% compared with those exposed to artificial seawater. Collectively, our results demonstrate that spiny lobster pueruli use chemical and pressure cues during onshore transport and selection of settlement habitat, highlighting the important role of behavioral responses to physical cues in the recruitment of this species

    Scyllarid Lobster Biology and Ecology

    Get PDF
    The family Scyllaridae is the most speciose and diverse of all families of marine lobsters. Slipper lobsters are found in both tropical and temperate habitats with hard or soft substrates and at different depths, and exhibit a wide array of morphological, anatomical, and physiological adaptations. Among the 20 genera and at least 89 species constituting 4 subfamilies, only some members of 4 genera, Thenus (Theninae), Scyllarides (Arctidinae), Ibacus and Parribacus (Ibacinae), form significant fisheries because of their large size. While scientific information on these lobsters has increased considerably in recent decades, it is still limited compared with commercially valuable spiny and clawed lobsters, and is confined to a few key species. The present chapter presents the current available knowledge on the biology of scyllarids and attempts to point out where questions remain to help focus further studies in this important group

    A noninvasive method for in situ determination of mating success in female American lobsters (Homarus americanus)

    Full text link
    Despite being one of the most productive fisheries in the Northwest Atlantic, much remains unknown about the natural reproductive dynamics of American lobsters. Recent work in exploited crustacean populations (crabs and lobsters) suggests that there are circumstances where mature females are unable to achieve their full reproductive potential due to sperm limitation. To examine this possibility in different regions of the American lobster fishery, a reliable and noninvasive method was developed for sampling large numbers of female lobsters at sea. This method involves inserting a blunt-tipped needle into the female's seminal receptacle to determine the presence or absence of a sperm plug and to withdraw a sample that can be examined for the presence of sperm. A series of control studies were conducted at the dock and in the laboratory to test the reliability of this technique. These efforts entailed sampling 294 female lobsters to confirm that the presence of a sperm plug was a reliable indicator of sperm within the receptacle and thus, mating. This paper details the methodology and the results obtained from a subset of the total females sampled. Of the 230 female lobsters sampled from George's Bank and Cape Ann, MA (size range = 71-145 mm in carapace length), 90.3% were positive for sperm. Potential explanations for the absence of sperm in some females include: immaturity (lack of physiological maturity), breakdown of the sperm plug after being used to fertilize a clutch of eggs, and lack of mating activity. The surveys indicate that this technique for examining the mating success of female lobsters is a reliable proxy that can be used in the field to document reproductive activity in natural populations

    Description of pereiopod setae of scyllarid lobsters, Scyllarides aequinoctialis, Scyllarides latus, and Scyllarides nodifer, with observations on the feeding during consumption of bivalves and gastropods

    Get PDF
    The morphological and behavioral aspects of slipper lobster (Scyllaridae) feeding have remained largely unexplored. Using scanning electron microscopy, the gross morphological structure of all segments of the pereiopods were described for three species of scyllarid lobsters. Five types of setae within three broad categories were found: simple (long and miniature), cuspidate (robust and conate), and teasel (a type of serrulate setae). Setae were arranged in a highly-organized, row-like pattern on the ventral and dorsal surfaces. Cuspidate setae were found on all surfaces of all segments. Simple setae were found only on the dactyl, whereas teazel setae were concentrated on the lateral-most edge of the alate carina on the merus in only one species [Scyllarides aequinoctialis (Lund, 1793)]; this species also differed from the other two [Scyllarides nodifer (Stimpson, 1866), Scyllarides latus (Latreille, 1803)] in setal patterning. All examined slipper lobsters differed in setal types and patterns from nephropid and palinurid lobsters, likely due to the more rigorous use of their pereiopods in accessing food. Feeding sequences of two of the slipper lobster species were videotaped and analyzed, and demonstrated a complex set of behaviors involving contact chemoreception by the antennules as part of an initial assessment of the food item, followed by extensive manipulation, probing, and eventual wedging behavior by the pereiopods as previously described for Scyllarides. Use of the antennules for food assessment and heavy reliance on the pereiopods, rather than the mouthparts, for food handling contrasts with nephropid and palinurid lobsters.https://doi.org/10.5343/bms.2017.1125Published versio

    The Genetics of Axonal Transport and Axonal Transport Disorders

    Get PDF
    Neurons are specialized cells with a complex architecture that includes elaborate dendritic branches and a long, narrow axon that extends from the cell body to the synaptic terminal. The organized transport of essential biological materials throughout the neuron is required to support its growth, function, and viability. In this review, we focus on insights that have emerged from the genetic analysis of long-distance axonal transport between the cell body and the synaptic terminal. We also discuss recent genetic evidence that supports the hypothesis that disruptions in axonal transport may cause or dramatically contribute to neurodegenerative diseases

    Biochemical changes throughout early- and middle-stages of embryogenesis in lobsters (Homarus americanus) under different thermal regimes

    Get PDF
    Most marine crustacean eggs contain the full complement of nutritional resources required to fuel their growth and development. Given the propensity of many ovigerous (egg-bearing) American lobsters (Homarus americanus) to undergo seasonal inshore-to-offshore migrations, thereby potentially exposing their eggs to varying thermal regimes, the goal of this study was to determine the impact of water temperature on egg quality over their course of development. This was accomplished by documenting changes in total lipids, proteins, and size (volume) of eggs subjected to one of three thermal regimes: inshore, offshore, and constant (16 °C) conditions. Total egg lipids showed a marked decrease over time, while protein levels increased over the same period. Although there were no significant differences in total lipids, proteins, or egg sizes between eggs exposed to inshore and offshore temperatures, they differed from values for eggs exposed to a constant temperature, which also hatched almost three months sooner. This is most likely due to the fact that eggs held at a constant temperature did not experience a period of slow development during the colder months from November to March that are important for synchronizing egg hatch and may be compromised by elevated seawater temperatures
    corecore