6 research outputs found
Vibrio Population Dynamics in Mid-Atlantic Surface Waters during Saharan Dust Events
Vibrio is a cosmopolitan genus of marine bacteria, highly investigated in coastal and estuarine environments. Vibrio have also been isolated from pelagic waters, yet very little is known about the ecology of these oligotrophic species. In this study we examined the relative change in bacterial abundance and more specifically the dynamics of Vibrio in the tropical North Atlantic in response to the arrival of pulses of Saharan dust aerosols, a major source of biologically important nutrients for downwind marine surface waters. Aerosol and surface water samples were collected over 1 month coinciding with at least two distinct dust events. Total bacterial counts increased by 1.6-fold correlating with the arrival of Saharan dust (r = 0.76; p = 0.001). Virus-like particles (VLP) also followed this trend and were correlated with bacterial counts (r = 0.67; p = 0.01). Vibrio specific qPCR targeting the 16S rRNA gene ranged from below detection limits to a high of 9,145 gene copies ml−1 with the arrival of dust. This increase equated to 6.5 × 102−1.5 × 103 individual genome equivalents ml−1 based on the known range of 16S rRNA copies among this genus. Vibrio exhibited bloom-bust cycles potentially attributed to selective viral lysis or bloom depletion of organic carbon. This work is one of the few studies to examine the open ocean ecology of Vibrio, a conditionally rare taxon, whose bloom-bust lifestyle likely is a contributing factor in the flow of nutrients and energy in pelagic ecosystems
Saharan dust deposition initiates successional patterns among marine microbes in the Western Atlantic
Deposition of aerosolized desert dust can affect marine microbial community structure and function through pulsed addition of limiting micro- and macronutrients. However, few studies have captured responses to dust deposition in situ following trans-oceanic transport. We conducted a 26-d time series evaluating biogeochemical and microbial community response to Saharan dust deposition in surface waters in the subtropical western Atlantic (Florida Keys National Marine Sanctuary, U.S.A.). Following periods of elevated atmospheric dust concentrations, particulate and dissolved iron concentrations increased in surface waters. Autotrophic picoeukaryote abundance increased rapidly, followed by increases in the abundance of heterotrophic bacteria and Synechococcus. Concomitant to cell count changes, we observed successional shifts in bacterial community composition. The relative abundances of Prochlorococcus and Pelagibacter declined with dust arrival, while relative abundance of heterotrophic bacteria increased, beginning with Vibrionales and followed sequentially by Chrysophyceae, Rhodobacteriaceae, and Flavobacteriaceae. Finally, a peak in Synechococcus cyanobacteria was observed. These results provide new insight into microbial community succession in response to Saharan dust deposition, their association with temporal dynamics in surface water dissolved and particulate iron concentrations, and a potential role for bioprocessing of dust particles in shaping marine microbial responses to deposition events
Distribution of Antibiotic Resistance in a Mixed-Use Watershed and the Impact of Wastewater Treatment Plants on Antibiotic Resistance in Surface Water
The aquatic environment has been recognized as a source of antibiotic resistance (AR) that factors into the One Health approach to combat AR. To provide much needed data on AR in the environment, a comprehensive survey of antibiotic-resistant bacteria (ARB), antibiotic resistance genes (ARGs), and antibiotic residues was conducted in a mixed-use watershed and wastewater treatment plants (WWTPs) within the watershed to evaluate these contaminants in surface water. A culture-based approach was used to determine prevalence and diversity of ARB in surface water. Low levels of AR Salmonella (9.6%) and Escherichia coli (6.5%) were detected, while all Enterococcus were resistant to at least one tested antibiotic. Fewer than 20% of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae (17.3%) and carbapenem-resistant Enterobacteriaceae (CRE) (7.7%) were recovered. Six ARGs were detected using qPCR, primarily the erythromycin-resistance gene, ermB. Of the 26 antibiotics measured, almost all water samples (98.7%) had detectable levels of antibiotics. Analysis of wastewater samples from three WWTPs showed that WWTPs did not completely remove AR contaminants. ARGs and antibiotics were detected in all the WWTP effluent discharges, indicating that WWTPs are the source of AR contaminants in receiving water. However, no significant difference in ARGs and antibiotics between the upstream and downstream water suggests that there are other sources of AR contamination. The widespread occurrence and abundance of medically important antibiotics, bacteria resistant to antibiotics used for human and veterinary purposes, and the genes associated with resistance to these antibiotics, may potentially pose risks to the local populations exposed to these water sources