1,090 research outputs found
Mini-walls for Bridgeland stability conditions on the derived category of sheaves over surfaces
For the derived category of bounded complexes of sheaves on a smooth
projective surface, Bridgeland and Arcara-Bertram constructed Bridgeland
stability conditions parametrized by . In this paper, we show that the set of mini-walls in
of a fixed numerical type is locally finite. In addition, we strengthen a
result of Bayer by proving that the moduli of polynomial Bridgeland semistable
objects of a fixed numerical type coincides with the moduli of -semistable objects whenever is larger than a universal constant
depending only on the numerical type. We further identify the moduli of
polynomial Bridgeland semistable objects with the Gieseker/Simpson moduli
spaces and the Uhlenbeck compactification spaces.Comment: 26 page
Recommended from our members
Genome-wide Integrative Analysis of Zika-Virus-Infected Neuronal Stem Cells Reveals Roles for MicroRNAs in Cell Cycle and Stemness.
Zika virus (ZIKV) infection is implicated in severe fetal developmental disorders, including microcephaly. MicroRNAs (miRNAs) post-transcriptionally regulate numerous processes associated with viral infection and neurodegeneration, but their contribution to ZIKV pathogenesis is unclear. We analyzed the mRNA and miRNA transcriptomes of human neuronal stem cells (hNSCs) during infection with ZIKV MR766 and Paraiba strains. Integration of the miRNA and mRNA expression data into regulatory interaction networks showed that ZIKV infection resulted in miRNA-mediated repression of genes regulating the cell cycle, stem cell maintenance, and neurogenesis. Bioinformatics analysis of Argonaute-bound RNAs in ZIKV-infected hNSCs identified a number of miRNAs with predicted involvement in microcephaly, including miR-124-3p, which dysregulates NSC maintenance through repression of the transferrin receptor (TFRC). Consistent with this, ZIKV infection upregulated miR-124-3p and downregulated TFRC mRNA in ZIKV-infected hNSCs and mouse brain tissue. These data provide insights into the roles of miRNAs in ZIKV pathogenesis, particularly the microcephaly phenotype
Recommended from our members
EUS-guided portal pressure gradient measurement with a simple novel device: a human pilot study.
Background and aimsPortal hypertension is a serious adverse event of liver cirrhosis. Recently, we developed a simple novel technique for EUS-guided portal pressure gradient (PPG) measurement (PPGM). Our animal studies showed excellent correlation between EUS-PPGM and interventional radiology-acquired PPGM. In this video we demonstrate the results of the first human pilot study of EUS-PPGM in patients with liver disease.MethodsEUS-PPGM was performed by experienced endosonographers using a linear echoendoscope, a 25-gauge FNA needle, and a novel compact manometer. The portal vein and hepatic vein (or inferior vena cava) were targeted by use of a transgastric or transduodenal approach. Feasibility was defined as successful PPGM in each patient. Safety was based on adverse events captured in a postprocedural interview.ResultsTwenty-eight patients underwent EUS-PPGM with 100% technical success and no adverse events. PPG ranged from 1.5 to 19 mm Hg and had excellent correlation with clinical parameters of portal hypertension, including the presence of varices (P = .0002), PH gastropathy (P = .007), and thrombocytopenia (P = .036).ConclusionThis novel technique of EUS-PPGM using a 25-gauge needle and compact manometer is feasible and appears safe. Given the availability of EUS and the simplicity of the manometry setup, EUS-guided PPG may represent a promising breakthrough for procuring indispensable information in the management of patients with liver disease
Zika virus infection reprograms global transcription of host cells to allow sustained infection.
Zika virus (ZIKV) is an emerging virus causally linked to neurological disorders, including congenital microcephaly and Guillain-Barré syndrome. There are currently no targeted therapies for ZIKV infection. To identify novel antiviral targets and to elucidate the mechanisms by which ZIKV exploits the host cell machinery to support sustained replication, we analyzed the transcriptomic landscape of human microglia, fibroblast, embryonic kidney and monocyte-derived macrophage cell lines before and after ZIKV infection. The four cell types differed in their susceptibility to ZIKV infection, consistent with differences in their expression of viral response genes before infection. Clustering and network analyses of genes differentially expressed after ZIKV infection revealed changes related to the adaptive immune system, angiogenesis and host metabolic processes that are conducive to sustained viral production. Genes related to the adaptive immune response were downregulated in microglia cells, suggesting that ZIKV effectively evades the immune response after reaching the central nervous system. Like other viruses, ZIKV diverts host cell resources and reprograms the metabolic machinery to support RNA metabolism, ATP production and glycolysis. Consistent with these transcriptomic analyses, nucleoside metabolic inhibitors abrogated ZIKV replication in microglia cells
Vibrational spectroscopy at electrolyte/electrode interfaces with graphene gratings.
Microscopic understanding of physical and electrochemical processes at electrolyte/electrode interfaces is critical for applications ranging from batteries, fuel cells to electrocatalysis. However, probing such buried interfacial processes is experimentally challenging. Infrared spectroscopy is sensitive to molecule vibrational signatures, yet to approach the interface three stringent requirements have to be met: interface specificity, sub-monolayer molecular detection sensitivity, and electrochemically stable and infrared transparent electrodes. Here we show that transparent graphene gratings electrode provide an attractive platform for vibrational spectroscopy at the electrolyte/electrode interfaces: infrared diffraction from graphene gratings offers enhanced detection sensitivity and interface specificity. We demonstrate the vibrational spectroscopy of methylene group of adsorbed sub-monolayer cetrimonium bromide molecules and reveal a reversible field-induced electrochemical deposition of cetrimonium bromide on the electrode controlled by the bias voltage. Such vibrational spectroscopy with graphene gratings is promising for real time and in situ monitoring of different chemical species at the electrolyte/electrode interfaces
- …