745 research outputs found

    Theory of Non-equilibrium Single Electron Dynamics in STM Imaging of Dangling Bonds on a Hydrogenated Silicon Surface

    Full text link
    During fabrication and scanning-tunneling-microscope (STM) imaging of dangling bonds (DBs) on a hydrogenated silicon surface, we consistently observed halo-like features around isolated DBs for specific imaging conditions. These surround individual or small groups of DBs, have abnormally sharp edges, and cannot be explained by conventional STM theory. Here we investigate the nature of these features by a comprehensive 3-dimensional model of elastic and inelastic charge transfer in the vicinity of a DB. Our essential finding is that non-equilibrium current through the localized electronic state of a DB determines the charging state of the DB. This localized charge distorts the electronic bands of the silicon sample, which in turn affects the STM current in that vicinity causing the halo effect. The influence of various imaging conditions and characteristics of the sample on STM images of DBs is also investigated.Comment: 33 pages, 9 figure

    New fabrication technique for highly sensitive qPlus sensor with well-defined spring constant

    Full text link
    A new technique for the fabrication of highly sensitive qPlus sensor for atomic force microscopy (AFM) is described. Focused ion beam was used to cut then weld onto a bare quartz tuning fork a sharp micro-tip from an electrochemically etched tungsten wire. The resulting qPlus sensor exhibits high resonance frequency and quality factor allowing increased force gradient sensitivity. Its spring constant can be determined precisely which allows accurate quantitative AFM measurements. The sensor is shown to be very stable and could undergo usual UHV tip cleaning including e-beam and field evaporation as well as in-situ STM tip treatment. Preliminary results with STM and AFM atomic resolution imaging at 4.5 K4.5\,K of the silicon Si(111)−7×7Si(111)-7\times 7 surface are presented.Comment: 5 pages, 3 figure

    Binary Atomic Silicon Logic

    Full text link
    It has long been anticipated that the ultimate in miniature circuitry will be crafted of single atoms. Despite many advances made in scanned probe microscopy studies of molecules and atoms on surfaces, challenges with patterning and limited thermal stability have remained. Here we make progress toward those challenges and demonstrate rudimentary circuit elements through the patterning of dangling bonds on a hydrogen terminated silicon surface. Dangling bonds sequester electrons both spatially and energetically in the bulk band gap, circumventing short circuiting by the substrate. We deploy paired dangling bonds occupied by one movable electron to form a binary electronic building block. Inspired by earlier quantum dot-based approaches, binary information is encoded in the electron position allowing demonstration of a binary wire and an OR gate

    Consistent probe spacing in multi-probe STM experiments

    Get PDF
    Multi-probe scanning tunneling microscopy can play a role in various electrical measurements and characterization of nanoscale objects. The consistent close placement of multiple probes relies on very sharp apexes with no other interfering materials along the shank of the tip. Electrochemically etched tips can prepare very sharp apex tips; however, other asperities on the shank can cause interference and limit the close positioning of multiple tips to beyond the measured radii. Gallium focused ion beam (FIB) milling is used to remove any interfering material and allow closely spaced tips with a consistent yield. The tip apex radius is evaluated with field ion microscopy, and the probe spacing is evaluated with STM on hydrogen terminated silicon surfaces. FIB prepared tips can consistently achieve the measured probe to probe spacing distances of 25 nm–50 nm

    Charging of electron beam irradiated amorphous carbon thin films at liquid nitrogen temperature.

    Get PDF
    We studied the charging behavior of an amorphous carbon thin film kept at liquid-nitrogen temperature under focused electron-beam irradiation. Negative charging of the thin film is observed. The charging is attributed to a local change in the work function of the thin film induced by electron-stimulated desorption similar to the working principle of the hole free phase plate in its Volta potential implementation at elevated temperature. The negative bias of the irradiated film arises from the electron beam induced desorption of water molecules from the carbon film surface. The lack of positive charging, which is expected for non-conductive materials, is explained by a sufficient electrical conductivity of the carbon thin film even at liquid-nitrogen temperature as proven by multi-probe scanning tunneling microscopy and spectroscopy measurements

    Dangling-bond charge qubit on a silicon surface

    Full text link
    Two closely spaced dangling bonds positioned on a silicon surface and sharing an excess electron are revealed to be a strong candidate for a charge qubit. Based on our study of the coherent dynamics of this qubit, its extremely high tunneling rate ~ 10^14 1/s greatly exceeds the expected decoherence rates for a silicon-based system, thereby overcoming a critical obstacle of charge qubit quantum computing. We investigate possible configurations of dangling bond qubits for quantum computing devices. A first-order analysis of coherent dynamics of dangling bonds shows promise in this respect.Comment: 17 pages, 3 EPS figures, 1 tabl

    Single Electron Dynamics of an Atomic Silicon Quantum Dot on the H-Si(100) 2x1 Surface

    Full text link
    Here we report the direct observation of single electron charging of a single atomic Dangling Bond (DB) on the H-Si(100) 2x1 surface. The tip of a scanning tunneling microscope is placed adjacent to the DB to serve as a single electron sensitive charge-detector. Three distinct charge states of the dangling bond, positive, neutral, and negative, are discerned. Charge state probabilities are extracted from the data, and analysis of current traces reveals the characteristic single electron charging dynamics. Filling rates are found to decay exponentially with increasing tip-DB separation, but are not a function of sample bias, while emptying rates show a very weak dependence on tip position, but a strong dependence on sample bias, consistent with the notion of an atomic quantum dot tunnel coupled to the tip on one side and the bulk silicon on the other.Comment: 7 pages, 6 figure
    • …
    corecore