2 research outputs found

    A Tale of Two Metals: New Cerium Iron Borocarbide Intermetallics Grown from Rare-Earth/Transition Metal Eutectic Fluxes

    No full text
    R<sub>33</sub>Fe<sub>14–<i>x</i></sub>Al<sub><i>x</i>+<i>y</i></sub>B<sub>25–<i>y</i></sub>C<sub>34</sub> (R = La or Ce; <i>x</i> ≤ 0.9; <i>y</i> ≤ 0.2) and R<sub>33</sub>Fe<sub>13–<i>x</i></sub>Al<sub><i>x</i></sub>B<sub>18</sub>C<sub>34</sub> (R = Ce or Pr; <i>x</i> < 0.1) were synthesized from reactions of iron with boron, carbon, and aluminum in R–T eutectic fluxes (T = Fe, Co, or Ni). These phases crystallize in the cubic space group <i>Im</i>3̅<i>m</i> (<i>a</i> = 14.617(1) Å, <i>Z</i> = 2, <i>R</i><sub>1</sub> = 0.0155 for Ce<sub>33</sub>Fe<sub>13.1</sub>Al<sub>1.1</sub>B<sub>24.8</sub>C<sub>34</sub>, and <i>a</i> = 14.246(8) Å, <i>Z</i> = 2, <i>R</i><sub>1</sub> = 0.0142 for Ce<sub>33</sub>Fe<sub>13</sub>B<sub>18</sub>C<sub>34</sub>). Their structures can be described as body-centered cubic arrays of large Fe<sub>13</sub> or Fe<sub>14</sub> clusters which are capped by borocarbide chains and surrounded by rare earth cations. The magnetic behavior of the cerium-containing analogs is complicated by the possibility of two valence states for cerium and possible presence of magnetic moments on the iron sites. Temperature-dependent magnetic susceptibility measurements and Mössbauer data show that the boron-centered Fe<sub>14</sub> clusters in Ce<sub>33</sub>Fe<sub>14–<i>x</i></sub>Al<sub><i>x</i>+<i>y</i></sub>B<sub>25–<i>y</i></sub>C<sub>34</sub> are not magnetic. X-ray photoelectron spectroscopy data indicate that the cerium is trivalent at room temperature, but the temperature dependence of the resistivity and the magnetic susceptibility data suggest Ce<sup>3+/4+</sup> valence fluctuation beginning at 120 K. Bond length analysis and XPS studies of Ce<sub>33</sub>Fe<sub>13</sub>B<sub>18</sub>C<sub>34</sub> indicate the cerium in this phase is tetravalent, and the observed magnetic ordering at <i>T</i><sub>C</sub> = 180 K is due to magnetic moments on the Fe<sub>13</sub> clusters

    A Tale of Two Metals: New Cerium Iron Borocarbide Intermetallics Grown from Rare-Earth/Transition Metal Eutectic Fluxes

    No full text
    R<sub>33</sub>Fe<sub>14–<i>x</i></sub>Al<sub><i>x</i>+<i>y</i></sub>B<sub>25–<i>y</i></sub>C<sub>34</sub> (R = La or Ce; <i>x</i> ≤ 0.9; <i>y</i> ≤ 0.2) and R<sub>33</sub>Fe<sub>13–<i>x</i></sub>Al<sub><i>x</i></sub>B<sub>18</sub>C<sub>34</sub> (R = Ce or Pr; <i>x</i> < 0.1) were synthesized from reactions of iron with boron, carbon, and aluminum in R–T eutectic fluxes (T = Fe, Co, or Ni). These phases crystallize in the cubic space group <i>Im</i>3̅<i>m</i> (<i>a</i> = 14.617(1) Å, <i>Z</i> = 2, <i>R</i><sub>1</sub> = 0.0155 for Ce<sub>33</sub>Fe<sub>13.1</sub>Al<sub>1.1</sub>B<sub>24.8</sub>C<sub>34</sub>, and <i>a</i> = 14.246(8) Å, <i>Z</i> = 2, <i>R</i><sub>1</sub> = 0.0142 for Ce<sub>33</sub>Fe<sub>13</sub>B<sub>18</sub>C<sub>34</sub>). Their structures can be described as body-centered cubic arrays of large Fe<sub>13</sub> or Fe<sub>14</sub> clusters which are capped by borocarbide chains and surrounded by rare earth cations. The magnetic behavior of the cerium-containing analogs is complicated by the possibility of two valence states for cerium and possible presence of magnetic moments on the iron sites. Temperature-dependent magnetic susceptibility measurements and Mössbauer data show that the boron-centered Fe<sub>14</sub> clusters in Ce<sub>33</sub>Fe<sub>14–<i>x</i></sub>Al<sub><i>x</i>+<i>y</i></sub>B<sub>25–<i>y</i></sub>C<sub>34</sub> are not magnetic. X-ray photoelectron spectroscopy data indicate that the cerium is trivalent at room temperature, but the temperature dependence of the resistivity and the magnetic susceptibility data suggest Ce<sup>3+/4+</sup> valence fluctuation beginning at 120 K. Bond length analysis and XPS studies of Ce<sub>33</sub>Fe<sub>13</sub>B<sub>18</sub>C<sub>34</sub> indicate the cerium in this phase is tetravalent, and the observed magnetic ordering at <i>T</i><sub>C</sub> = 180 K is due to magnetic moments on the Fe<sub>13</sub> clusters
    corecore