73 research outputs found

    Controllable binding of polar molecules and meta-stability of 1-D gases with attractive dipole forces

    Full text link
    We explore one-dimensional (1-D) samples of ultracold polar molecules with attractive dipole-dipole interactions and show the existence of a repulsive barrier due to a strong quadrupole interaction between molecules. This barrier can stabilize a gas of ultracold KRb molecules and even lead to long-range wells supporting bound states between molecules. The properties of these wells can be controlled by external electric fields, allowing the formation of long polymer-like chains of KRb, and studies of quantum phase transitions by varying the effective interaction between molecules. We discuss the generalization of those results to other systems

    Approximating electronically excited states with equation-of-motion linear coupled-cluster theory

    Full text link
    A new perturbative approach to canonical equation-of-motion coupled-cluster theory is presented using coupled-cluster perturbation theory. A second-order M{\o}ller-Plesset partitioning of the Hamiltonian is used to obtain the well known equation-of-motion many-body perturbation theory (EOM-MBPT(2)) equations and two new equation-of-motion methods based on the linear coupled-cluster doubles (EOM-LCCD) and linear coupled-cluster singles and doubles (EOM-LCCSD) wavefunctions. This is achieved by performing a short-circuiting procedure on the MBPT(2) similarity transformed Hamiltonian. These new methods are benchmarked against very accurate theoretical and experimental spectra from 25 small organic molecules. It is found that the proposed methods have excellent agreement with canonical EOM-CCSD state for state orderings and relative excited state energies as well as acceptable quantitative agreement for absolute excitation energies compared with the best estimate theory and experimental spectra.Comment: 9 pages 3 figure
    • …
    corecore