2 research outputs found

    Bacterial Derived Carbohydrates Bind Cyr1 and Trigger Hyphal Growth in <i>Candida albicans</i>

    No full text
    The dimorphic yeast <i>Candida albicans</i> is the most common pathogenic fungus found in humans. While this species is normally commensal, a morphological switch from budding yeast to filamentous hyphae allows the fungi to invade epithelial cells and cause infections. The phenotypic change is controlled by the adenylyl cyclase, Cyr1. Interestingly, this protein contains a leucine-rich repeat (LRR) domain, which is commonly found in innate immune receptors from plants and animals. A functional and pure LRR domain was obtained in high yields from <i>E. coli</i> expression. Utilizing a surface plasmon resonance assay, the LRR was found to bind diverse bacterial derived carbohydrates with high affinity. This domain is capable of binding fragments of peptidoglycan, a carbohydrate polymer component of the bacterial cell wall, as well as anthracyclines produced by <i>Streptomyces</i>, leading to hyphae formation. These findings add another dimension to the human microbiome, taking into account yeast–bacteria interactions that occur in the host

    Crohn’s Disease Variants of Nod2 Are Stabilized by the Critical Contact Region of Hsp70

    No full text
    Nod2 is a cytosolic, innate immune receptor responsible for binding to bacterial cell wall fragments such as muramyl dipeptide (MDP). Upon binding, subsequent downstream activation of the NF-κB pathway leads to an immune response. Nod2 mutations are correlated with an increased susceptibility to Crohn’s disease (CD) and ultimately result in a misregulated immune response. Previous work had demonstrated that Nod2 interacts with and is stabilized by the molecular chaperone Hsp70. In this work, it is shown using purified protein and <i>in vitro</i> biochemical assays that the critical Nod2 CD mutations (G908R, R702W, and 1007fs) preserve the ability to bind bacterial ligands. A limited proteolysis assay and luciferase reporter assay reveal regions of Hsp70 that are capable of stabilizing Nod2 and rescuing CD mutant activity. A minimal 71-amino acid subset of Hsp70 that stabilizes the CD-associated variants of Nod2 and restores a proper immune response upon activation with MDP was identified. This work suggests that CD-associated Nod2 variants could be stabilized <i>in vivo</i> with a molecular chaperone
    corecore