31 research outputs found

    Unilateral Pigmentary Retinopathy Associated with Multiple Sclerosis

    No full text
    Unilateral retinitis pigmentosa (RP) is an incompletely characterized entity that can be mimicked by non-genetic disease processes including uveitis [1]. Although patients with uveitis have an approximately 10-fold elevated risk of developing multiple sclerosis (MS) [2], an association between MS and pigmentary retinopathy has not been described. Herein we report 5 cases of patients presenting with clinical diagnoses of unilateral RP and a history of MS

    Argus—A New Database System for Web-Based Analysis of Multiple Microarray Data Sets

    No full text
    The ongoing revolution in microarray technology allows biologists studying gene expression to routinely collect >10(5) data points in a given experiment. Widely accessible and versatile database software is required to process this large amount of raw data into a format that facilitates the development of new biological insights. Here, we present a novel microarray database software system, named Argus, designed to process, analyze, manage, and publish microarray data. Argus imports the intensities and images of externally quantified microarray spots, performs normalization, and calculates ratios of gene expression between conditions. The database can be queried locally or over the Web, providing a convenient format for Web-publishing entire microarray data sets. Searches for regulated genes can be conducted across multiple experiments, and the integrated results incorporate images of the actual hybridization spots for artifact screening. Query results are presented in a clone- or gene-oriented fashion to rapidly identify highly regulated genes, and scatterplots of expression ratios allow an individual ratio to be interpreted in the context of all data points in the experiment. Algorithms were developed to optimize response times for queries of regulated genes. Supporting databases are updated easily to maintain current gene identity information, and hyperlinks to the Web provide access to descriptions of gene function. Query results also can be exported for higher-order analyses of expression patterns. This combination of features currently is not available in similar software. Argus is available at http://vessels.bwh.harvard.edu/software/Argus

    Tauroursodeoxycholic acid (TUDCA) protects photoreceptors from cell death after experimental retinal detachment.

    Get PDF
    Detachment of photoreceptors from the underlying retinal pigment epithelium is seen in various retinal disorders such as retinal detachment and age-related macular degeneration and leads to loss of photoreceptors and vision. Pharmacologic inhibition of photoreceptor cell death may prevent this outcome. This study tests whether systemic administration of tauroursodeoxycholic acid (TUDCA) can protect photoreceptors from cell death after experimental retinal detachment in rodents.Retinal detachment was created in rats by subretinal injection of hyaluronic acid. The animals were treated daily with vehicle or TUDCA (500 mg/kg). TUNEL staining was used to evaluate cell death. Photoreceptor loss was evaluated by measuring the relative thickness of the outer nuclear layer (ONL). Macrophage recruitment, oxidative stress, cytokine levels, and caspase levels were also quantified. Three days after detachment, TUDCA decreased the number of TUNEL-positive cells compared to vehicle (651±68/mm(2) vs. 1314±68/mm(2), P = 0.001) and prevented the reduction of ONL thickness ratio (0.84±0.03 vs. 0.65±0.03, P = 0.002). Similar results were obtained after 5 days of retinal detachment. Macrophage recruitment and expression levels of TNF-a and MCP-1 after retinal detachment were not affected by TUDCA treatment, whereas increases in activity of caspases 3 and 9 as well as carbonyl-protein adducts were almost completely inhibited by TUDCA treatment.Systemic administration of TUDCA preserved photoreceptors after retinal detachment, and was associated with decreased oxidative stress and caspase activity. TUDCA may be used as a novel therapeutic agent for preventing vision loss in diseases that are characterized by photoreceptor detachment

    Characterization of the test sample set.

    No full text
    <p>A) Samples from previously reported patients with Alu insertion in <i>MAK</i> exon 9 [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0142614#pone.0142614.ref021" target="_blank">21</a>] and control samples were PCR amplified to detect homozygous alleles for Alu insertion and WT alleles. B) Sequence of the inserted element (280 bp Alu, 54 bp poly-A and 13 bp duplication of exon 9 sequence). C) Sanger sequence of the exon 9 Alu insertion breakpoints.</p
    corecore