32 research outputs found

    Assembly of the SIR Complex and Its Regulation by O-Acetyl-ADP-Ribose, a Product of NAD-Dependent Histone Deacetylation

    Get PDF
    SummaryAssembly of silent chromatin domains in budding yeast involves the deacetylation of histone tails by Sir2 and the association of the Sir3 and Sir4 proteins with hypoacetylated histone tails. Sir2 couples deacetylation to NAD hydrolysis and the synthesis of a metabolite, O-acetyl-ADP-ribose (AAR), but the functional significance of NAD hydrolysis or AAR, if any, is unknown. Here we examine the association of the Sir2, Sir3, and Sir4 proteins with each other and histone tails. Our analysis reveals that deacetylation of histone H4-lysine 16 (K16), which is critical for silencing in vivo, is also critical for the binding of Sir3 and Sir4 to histone H4 peptides in vitro. Moreover, AAR itself promotes the association of multiple copies of Sir3 with Sir2/Sir4 and induces a dramatic structural rearrangement in the SIR complex. These results suggest that Sir2 activity modulates the assembly of the SIR complex through both histone deacetylation and AAR synthesis

    A nucleosome turnover map reveals that the stability of histone H4 Lys20 methylation depends on histone recycling in transcribed chromatin

    Get PDF
    Nucleosome composition actively contributes to chromatin structure and accessibility. Cells have developed mechanisms to remove or recycle histones, generating a landscape of differentially aged nucleosomes. This study aimed to create a high-resolution, genome-wide map of nucleosome turnover in Schizosaccharomyces pombe. The recombination-induced tag exchange (RITE) method was used to study replication-independent nucleosome turnover through the appearance of new histone H3 and the disappearance or preservation of old histone H3. The genome-wide location of histones was determined by chromatin immunoprecipitation–exonuclease methodology (ChIP-exo). The findings were compared with diverse chromatin marks, including histone variant H2A.Z, post-translational histone modifications, and Pol II binding. Finally, genome-wide mapping of the methylation states of H4K20 was performed to determine the relationship between methylation (mono, di, and tri) of this residue and nucleosome turnover. Our analysis showed that histone recycling resulted in low nucleosome turnover in the coding regions of active genes, stably expressed at intermediate levels. High levels of transcription resulted in the incorporation of new histones primarily at the end of transcribed units. H4K20 was methylated in low-turnover nucleosomes in euchromatic regions, notably in the coding regions of long genes that were expressed at low levels. This transcription-dependent accumulation of histone methylation was dependent on the histone chaperone complex FACT. Our data showed that nucleosome turnover is highly dynamic in the genome and that several mechanisms are at play to either maintain or suppress stability. In particular, we found that FACT-associated transcription conserves histones by recycling them and is required for progressive H4K20 methylation

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Summary Background Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. Methods We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung’s disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. Findings We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung’s disease) from 264 hospitals (89 in high-income countries, 166 in middleincome countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in lowincome countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. Interpretation Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between lowincome, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030

    Recognition of Acetylated Proteins Lessons from an Ancient Family of Enzymes

    Get PDF
    AbstractThe structure of a Sir2-like enzyme in complex with an acetylated peptide substrate has been solved, and provides the first glimpse into the mechanism of substrate recognition by this highly conserved family of enzymes

    Ubiquitylation of histone H2B controls RNA polymerase II transcription elongation independently of histone H3 methylation

    No full text
    Transcription by RNA polymerase II (polII) is accompanied by dramatic changes in chromatin structure. Numerous enzymatic activities contribute to these changes, including ATP-dependent nucleosome remodeling enzymes and histone modifying enzymes. Recent studies in budding yeast document a histone modification pathway associated with polII transcription, whereby ubiquitylation of histone H2B leads to methylation of histone H3 on specific lysine residues. Although this series of events appears to be highly conserved among eukaryotes, its mechanistic function in transcription is unknown. Here we document a significant functional divergence between ubiquitylation of H2B and methylation of Lys 4 on histone H3 in the fission yeast Schizosaccharomyces pombe. Loss of H2B ubiquitylation results in defects in cell growth, septation, and nuclear structure, phenotypes not observed in cells lacking H3 Lys 4 methylation. Consistent with these results, gene expression microarray analysis reveals a greater role for H2B ubiquitylation in gene regulation than for H3 Lys 4 methylation. Chromatin immunoprecipitation (ChIP) experiments demonstrate that loss of H2B ubiquitylation alters the distribution of polII and histones in gene coding regions. We propose that ubiquitylation of H2B impacts transcription elongation and nuclear architecture through its effects on chromatin dynamics

    Comparing the signaling and transcriptome profiling landscapes of human iPSC-derived and primary rat neonatal cardiomyocytes

    No full text
    Abstract The inaccessibility of human cardiomyocytes significantly hindered years of cardiovascular research efforts. To overcome these limitations, non-human cell sources were used as proxies to study heart function and associated diseases. Rodent models became increasingly acceptable surrogates to model the human heart either in vivo or through in vitro cultures. More recently, due to concerns regarding animal to human translation, including cross-species differences, the use of human iPSC-derived cardiomyocytes presented a renewed opportunity. Here, we conducted a comparative study, assessing cellular signaling through cardiac G protein-coupled receptors (GPCRs) in rat neonatal cardiomyocytes (RNCMs) and human induced pluripotent stem cell-derived cardiomyocytes. Genetically encoded biosensors were used to explore GPCR-mediated nuclear protein kinase A (PKA) and extracellular signal-regulated kinase 1/ 2 (ERK1/2) activities in both cardiomyocyte populations. To increase data granularity, a single-cell analytical approach was conducted. Using automated high content microscopy, our analyses of nuclear PKA and ERK1/2 signaling revealed distinct response clusters in rat and human cardiomyocytes. In line with this, bulk RNA-seq revealed key differences in the expression patterns of GPCRs, G proteins and downstream effector expression levels. Our study demonstrates that human stem cell-derived models of the cardiomyocyte offer distinct advantages for understanding cellular signaling in the heart

    Steps in Assembly of Silent Chromatin in Yeast: Sir3-Independent Binding of a Sir2/Sir4 Complex to Silencers and Role for Sir2-Dependent Deacetylation

    No full text
    Transcriptional silencing at the budding yeast silent mating type (HM) loci and telomeric DNA regions requires Sir2, a conserved NAD-dependent histone deacetylase, Sir3, Sir4, histones H3 and H4, and several DNA-binding proteins. Silencing at the yeast ribosomal DNA (rDNA) repeats requires a complex containing Sir2, Net1, and Cdc14. Here we show that the native Sir2/Sir4 complex is composed solely of Sir2 and Sir4 and that native Sir3 is not associated with other proteins. We further show that the initial binding of the Sir2/Sir4 complex to DNA sites that nucleate silencing, accompanied by partial Sir2-dependent histone deacetylation, occurs independently of Sir3 and is likely to be the first step in assembly of silent chromatin at the HM loci and telomeres. The enzymatic activity of Sir2 is not required for this initial binding, but is required for the association of silencing proteins with regions distal from nucleation sites. At the rDNA repeats, we show that histone H3 and H4 tails are required for silencing and rDNA-associated H4 is hypoacetylated in a Sir2-dependent manner. However, the binding of Sir2 to rDNA is independent of its histone deacetylase activity. Together, these results support a stepwise model for the assembly of silent chromatin domains in Saccharomyces cerevisiae
    corecore