3 research outputs found
Profiling of skeletal muscle Ankrd2 protein in human cardiac tissue and neonatal rat cardiomyocytes
Muscle-specific mechanosensors Ankrd2/Arpp (ankyrin repeat protein 2) and Ankrd1/CARP (cardiac ankyrin repeat protein) have an important role in transcriptional regulation, myofibrillar assembly, cardiogenesis and myogenesis. In skeletal muscle myofibrils, Ankrd2 has a structural role as a component of a titin associated stretch-sensing complex, while in the nucleus it exerts regulatory function as transcriptional co-factor. It is also involved in myogenic differentiation and coordination of myoblast proliferation. Although expressed in the heart, the role of Ankrd2 in the cardiac muscle is completely unknown. Recently, we have shown that hypertrophic and dilated cardiomyopathy pathways are altered upon Ankrd2 silencing suggesting the importance of this protein in cardiac tissue. Here we provide the underlying basis for the functional investigation of Ankrd2 in the heart. We confirmed reduced Ankrd2 expression levels in human heart in comparison with Ankrd1 using RNAseq and Western blot. For the first time we demonstrated that, apart from the sarcomere and nucleus, both proteins are localized to the intercalated disks of human cardiomyocytes. We further tested the expression and localization of endogenous Ankrd2 in rat neonatal cardiomyocytes, a well-established model for studying cardiac-specific proteins. Ankrd2 was found to be expressed in both the cytoplasm and nucleus, independently from maturation status of cardiomyocytes. In contrast to Ankrd1, it is not responsive to the cardiotoxic drug Doxorubicin, suggesting that different mechanisms govern their expression in cardiac cells
Differential expression and localization of Ankrd2 isoforms in human skeletal and cardiac muscles
Four human Ankrd2 transcripts, reported in the Ensembl database, code for distinct protein isoforms (360, 333, 327 and 300 aa), and so far, their existence, specific expression and localization patterns have not been studied in detail. Ankrd2 is preferentially expressed in the slow fibers of skeletal muscle. It is found in both the nuclei and the cytoplasm of skeletal muscle cells, and its localization is prone to change during differentiation and upon stress. Ankrd2 has also been detected in the heart, in ventricular cardiomyocytes and in the intercalated disks (ICDs). The main objective of this study was to distinguish between the Ankrd2 isoforms and to determine the contribution of each one to the general profile of Ankrd2 expression in striated muscles. We demonstrated that the known expression and localization pattern of Ankrd2 in striated muscle can be attributed to the isoform of 333 aa which is dominant in both tissues, while the designated cardiac and canonical isoform of 360 aa was less expressed in both tissues. The 360 aa isoform has a distinct nuclear localization in human skeletal muscle, as well as in primary myoblasts and myotubes. In contrast to the isoform of 333 aa, it was not preferentially expressed in slow fibers and not localized to the ICDs of human cardiomyocytes. Regulation of the expression of both isoforms is achieved at the transcriptional level. Our results set the stage for investigation of the specific functions and interactions of the Ankrd2 isoforms in healthy and diseased human striated muscles