1 research outputs found
Robust, Quantitative Analysis of Proteins using Peptide Immunoreagents, in Vitro Translation, and an Ultrasensitive Acoustic Resonant Sensor
A major benefit of
proteomic and genomic data is the potential
for developing thousands of novel diagnostic and analytical tests
of cells, tissues, and clinical samples. Monoclonal antibody technologies,
phage display and mRNA display, are methods that could be used to
generate affinity ligands against each member of the proteome. Increasingly,
the challenge is not ligand generation, rather the analysis and affinity
rank-ordering of the many ligands generated by these methods. Here,
we developed a quantitative method to analyze protein interactions
using in vitro translated ligands. In this assay, in vitro translated
ligands generate a signal by simultaneously binding to a target immobilized
on a magnetic bead and to a sensor surface in a commercial acoustic
sensing device. We then normalize the binding of each ligand with
its relative translation efficiency in order to rank-order the different
ligands. We demonstrate the method with peptides directed against
the cancer marker Bcl-x<sub>L</sub>. Our method has 4- to 10-fold
higher sensitivity, using 100-fold less protein and 5-fold less antibody
per sample, as compared directly with ELISA. Additionally, all analysis
can be conducted in complex mixtures at physiological ionic strength.
Lastly, we demonstrate the ability to use peptides as ultrahigh affinity
reagents that function in complex matrices, as would be needed in
diagnostic applications