2 research outputs found

    UAV Formation Preservation for Target Tracking Applications

    No full text
    This paper presents a collaborative target tracking application with multiple agents and a formulation of an agent-formation problem with desired inter-agent distances and specified bounds. We propose a barrier Lyapunov function-based distributed control law to preserve the formation for target-tracking and assess its stability using a kinematic model. Numerical results with this model are presented to demonstrate the advantages of the proposed control over a quadratic Lyapunov function-based control. A concluding evaluation using experimental ROS simulations is presented to illustrate the applicability of the proposed control approach to a multi-rotor system and a target executing straight line and circular motion

    Box Wing: Aerodynamic experimental study for applications in MAVs

    No full text
    Advancements in the field of aerial robotics and micro aerial vehicles (MAVs) have increased the demand for high payload capabilities. Closed wing designs like the annular wing, the joined wing, the box wing and spiroid tip devices improve the aerodynamic performance by suppressing the wingtip vortices along with an enhanced lift coefficient. A box wing may be defined as a wing that effectively has two main planes which merge at their ends so that there are no conventional wingtips. We propose the implementation of box wings as the main lifting surface for such systems. Box wings have a potential of generating lift with considerably less induced drag and delayed stall angles than monoplane wings. We study the aerodynamic aspects of a box wing model using wind tunnel tests and numerical simulations. We conducted Computational Fluid Dynamics (CFD) simulation subjecting the model to a steady flow and later analysed the vortex core using CFD tools. Wind tunnel measurements of the forces were obtained using sting balance. Furthermore, polyester thread tufts and smoke flow visualisation were performed to understand the qualitative behaviour of the scaled model in the open to atmosphere, suction type tunnel. Our results reveal an increase in the lift to drag (L/D) ratio of the wing by 25 % and a delay in the model’s stall angle by +6° compared to a monoplane; implying a lower stalling speed for mini unmanned aerial vehicles (UAVs) and MAVs. These advancements if applied could revolutionize the capabilities of intelligent flying systems by enabling them to carry better sensors, computational units and other payloads as per the mission
    corecore