4 research outputs found

    Parametric Study for Runner Modification of Die Casted Part with Venting Systems

    Get PDF
    High pressure die casting (HPDC) creates complex components by injecting the molten metal inside the cavity at high pressure. Failure in die casting may reduce product mechanical properties, surface quality, and life cycle. This research aimed to investigate the die-casting process of an inspection instrument–test piece using parametric study and computational fluid dynamics (CFD) analysis. Parameters used in the die-casting process are important since they affect the quality of molten flow inside the cavity. Thus, a parametric study is conducted to investigate the optimum parameter used in the die-casting process of the test piece. Based on the parametric analysis, the higher the velocity, the higher the pressure of molten metal inside the cavity, which means low air entrapment, hence, high volume of molten metal leads to high temperature. Cavity pressure lower than atmospheric pressure also could help to suck the air out from the molten metal, however, too low cavity pressure also could lead to backflow that could trap more air. In this analysis, the optimized parameters are cavity pressure of 10,000 Pa and inlet velocity of 3.00 m/s. This research also investigated the effect of runner gating system design optimization in reducing gas porosity. This research proposed a new runner design named outward curvature runner with air vents that have improved the velocity and temperature distributions in reducing air entrapment and thermal differences according to CFD analysis results. This research also aims to give die-casting manufacturers ideas for reducing manufacturing costs and improving productivity

    Numerical and Experimental Analysis on Runner and Gate Positioning for Magnesium Alloy Die-casted Test Piece

    Get PDF
    High Pressure Die Casting (HPDC) is a manufacturing process producing complex and precise products by injecting molten material into mold cavity at top speed and pressure. The quality of product is highly related with mold cavity design. Casting defects due to inappropriate mold design will affect mechanical properties, surface quality and product life cycle. Optimization of runner system is essential to manufacture complex and precision product design with minimal defects. The combination of runner and gating system is investigated in this paper. This paper investigated the effect of runner and gating optimization in reducing the gas porosity inside casting by evaluating the fluid and thermal distribution behavior in experimental and Computational Fluid Dynamic (CFD). The gas porosity generated in the molten magnesium alloy is due to the turbulent flow and the inconsistency of the fluid flow to push the gas bubble away from the main casting. This paper includes an X-ray of a sample product that shows correlation between gas porosity and CFD results. Results show that localize porosity gathered at the bottom of the main casting. Based on localized porosity position, runner and gating system is modified and numerical simulation is carried out for analysis. An inspection instrument step-type test piece is taken as an investigation sample to illustrate the technique of design modifications and improvements. Process parameters considered in this paper are injection speed, injection pressure, melt temperature and mold temperature. This paper proposed new runner designs that can generate balanced velocity and temperature distribution inside mold cavity, improving the solidification process aimed for reducing casting defects

    Numerical and Experimental Analysis on Runner and Gate Positioning for Magnesium Alloy Die-Casted Test Piece

    Get PDF
    High Pressure Die Casting (HPDC) is a manufacturing process producing complex and precise products by injecting molten material into mold cavity at top speed and pressure. The quality of product is highly related with mold cavity design. Casting defects due to inappropriate mold design will affect mechanical properties, surface quality and product life cycle. Optimization of runner system is essential to manufacture complex and precision product design with minimal defects. The combination of runner and gating system is investigated in this paper. This paper investigated the effect of runner and gating optimization in reducing the gas porosity inside casting by evaluating the fluid and thermal distribution behavior in experimental and Computational Fluid Dynamic (CFD). The gas porosity generated in the molten magnesium alloy is due to the turbulent flow and the inconsistency of the fluid flow to push the gas bubble away from the main casting. This paper includes an X-ray of a sample product that shows correlation between gas porosity and CFD results. Results show that localize porosity gathered at the bottom of the main casting. Based on localized porosity position, runner and gating system is modified and numerical simulation is carried out for analysis. An inspection instrument step-type test piece is taken as an investigation sample to illustrate the technique of design modifications and improvements. Process parameters considered in this paper are injection speed, injection pressure, melt temperature and mold temperature. This paper proposed new runner designs that can generate balanced velocity and temperature distribution inside mold cavity, improving the solidification process aimed for reducing casting defects

    OUTWARD CURVATURE RUNNER WITH AIR VENTS FOR DIE CASTED TEST PIECE BASED ON MANUFACTURABLE MOLD DESIGN

    Get PDF
    Die casting is a manufacturing process used to produce complex and precise products where molten material is injected into the mold cavity at a very high speed and pressure. Metal injection molding manufacturing is gradually increasing due to the demand for lightweight and sustainable material. Magnesium has several unique physical properties that are comparable with Aluminum metal. In this research, the objective is to study the effect of modification on runner and installation of air vents in reducing investigated defects location. The design of the cavity in this project is a ‘test piece’, an inspection instrument. Design modeling and the relevant parameter is input into ANSYS software for numerical simulation. Novelty runner and gate design (Outward curvature runner with air vent) to enhance fluid behavior inside the cavity are discussed in this paper. Effect of inserting different plugger speed and inserting vacuum also found in this research study. Found that, the modified design could improve the distribution of velocity and temperature of molten metal inside the mold cavity. The modified design also have optimized the fluid flow and eliminate the vortex formation
    corecore