4 research outputs found

    Human genetic and metabolite variation reveals that methylthioadenosine is a prognostic biomarker and an inflammatory regulator in sepsis.

    Get PDF
    Sepsis is a deleterious inflammatory response to infection with high mortality. Reliable sepsis biomarkers could improve diagnosis, prognosis, and treatment. Integration of human genetics, patient metabolite and cytokine measurements, and testing in a mouse model demonstrate that the methionine salvage pathway is a regulator of sepsis that can accurately predict prognosis in patients. Pathway-based genome-wide association analysis of nontyphoidal Salmonella bacteremia showed a strong enrichment for single-nucleotide polymorphisms near the components of the methionine salvage pathway. Measurement of the pathway's substrate, methylthioadenosine (MTA), in two cohorts of sepsis patients demonstrated increased plasma MTA in nonsurvivors. Plasma MTA was correlated with levels of inflammatory cytokines, indicating that elevated MTA marks a subset of patients with excessive inflammation. A machine-learning model combining MTA and other variables yielded approximately 80% accuracy (area under the curve) in predicting death. Furthermore, mice infected with Salmonella had prolonged survival when MTA was administered before infection, suggesting that manipulating MTA levels could regulate the severity of the inflammatory response. Our results demonstrate how combining genetic data, biomolecule measurements, and animal models can shape our understanding of disease and lead to new biomarkers for patient stratification and potential therapeutic targeting

    Evaluating group housing strategies for the ex-situ conservation of harlequin frogs (Atelopus spp.) using behavioral and physiological indicators

    Get PDF
    We have established ex situ assurance colonies of two endangered Panamanian harlequin frogs, Atelopus certus and Atelopus glyphus, but observed that males fought with each other when housed as a group. Housing frogs individually eliminated this problem, but created space constraints. To evaluate the potential stress effects from aggressive interactions when grouping frogs, we housed male frogs in replicated groups of one, two, and eight. We measured aggressive behavioral interactions and fecal glucocorticoid metabolite (GC) concentrations as indicators of stress in each tank. In both small and large groups, frogs initially interacted aggressively, but aggressive interactions and fecal GCs declined significantly after the first 2 weeks of being housed together, reaching the lowest levels by week 4. We conclude that aggressive interactions in same-sex groups of captive Atelopus may initially cause stress, but the frogs become habituated within a few weeks and they can safely be housed in same-sex groups for longer periods of time
    corecore