31 research outputs found

    A new 4-D hyperchaotic hidden attractor system: Its dynamics, coexisting attractors, synchronization and microcontroller implementation

    Get PDF
    In this paper, a simple 4-dimensional hyperchaotic system is introduced. The proposed system has no equilibria points, so it admits hidden attractor which is an interesting feature of chaotic systems. Another interesting feature of the proposed system is the coexisting of attractors where it shows periodic and chaotic coexisting attractors. After introducing the system, the system is analyzed dynamically using numerical and theoretical techniques. In this analysis, Lyapunov exponents and bifurcation diagrams have been used to investigate chaotic and hyperchaotic nature, the ranges of system parameters for different behaviors and the route for chaos and coexisting attractors regions. In the next part of our work, a synchronization control system for two identical systems is designed. The design procedure uses a combination of simple synergetic control with adaptive updating laws to identify the unknown parameters derived basing on Lyapunov theorem. Microcontroller (MCU) based hardware implementation system is proposed and tested by using MATLAB as a display side. As an application, the designed synchronization system is used as a secure analog communication system. The designed MCU system with MATLAB Simulation is used to validate the designed synchronization and secure communication systems and excellent results have been obtained

    A new optimized demand management system for smart grid-based residential buildings adopting renewable and storage energies

    Get PDF
    Demand Side Management (DSM) implies intelligently managing load appliances in a Smart Grid (SG). DSM programs help customers save money by reducing their electricity bills, minimizing the utility’s peak demand, and improving load factor. To achieve these goals, this paper proposes a new load shifting-based optimal DSM model for scheduling residential users’ appliances. The proposed system effectively handles the challenges raised in the literature regarding the absence of using recent, easy, and more robust optimization techniques, a comparison procedure with well-established ones, using Renewable Energy Resources (RERs), Renewable Energy Storage (RES), and adopting consumer comfort. This system uses recent algorithms called Virulence Optimization Algorithm (VOA) and Earth Worm Optimization Algorithm (EWOA) for optimally shifting the time slots of shiftable appliances. The system adopts RERs, RES, as well as utility grid energy for supplying load appliances. This system takes into account user preferences, timing factors for each appliance, and a pricing signal for relocating shiftable appliances to flatten the energy demand profile. In order to figure out how much electricity users will have to pay, a Time Of Use (TOU) dynamic pricing scheme has been used. Using MATLAB simulation environment, we have made effectiveness-based comparisons of the adopted optimization algorithms with the well-established meta-heuristics and evolutionary algorithms (Genetic Algorithm (GA), Cuckoo Search Optimization (CSO), and Binary Particle Swarm Optimization (BPSO) in order to determine the most efficient one. Without adopting RES, the results indicate that VOA outperforms the other algorithms. The VOA enables 59% minimization in Peak-to-Average Ratio (PAR) of consumption energy and is more robust than other competitors. By incorporating RES, the EWOA, alongside the VOA, provides less deviation and a lower PAR. The VOA saves 76.19% of PAR, and the EWOA saves 73.8%, followed by the BPSO, GA, and CSO, respectively. The electricity consumption using VOA and EWOA-based DSM cost 217 and 210 USD cents, respectively, whereas non-scheduled consumption costs 273 USD cents and scheduling based on BPSO, GA, and CSO costs 219, 220, and 222 USD cents.publishedVersio

    A novel real-time electricity scheduling for home energy management system using the internet of energy

    Get PDF
    This paper presents a novel scheduling scheme for the real-time home energy management systems based on Internet of Energy (IoE). The scheme is a multi-agent method that considers two chief purposes including user satisfaction and energy consumption cost. The scheme is designed under environment of microgrid. The user impact in terms of energy cost savings is generally significant in terms of system efficiency. That is why domestic users are involved in the management of domestic appliances. The optimization algorithms are based on an improved version of the rainfall algorithm and the salp swarm algorithm. In this paper, the Time of Use (ToU) model is proposed to define the rates for shoulder-peak and on-peak hours. A two-level communication system connects the microgrid system, implemented in MATLAB, to the cloud server. The local communication level utilizes IP/TCP and MQTT and is used as a protocol for the global communication level. The scheduling controller proposed in this study succeeded the energy saving of 25.3% by using the salp swarm algorithm and saving of 31.335% by using the rainfall algorithm

    A novel 4 dimensional hyperchaotic system with its control, Synchronization and Implementation

    Get PDF
    This paper presents a new hyperchaotic system which shows some interesting features, the system is 4-dimensional with 4 nonlinearities. An extensive numerical analysis has showed that the system has some interesting features and strange behaviors. The numerical analysis includes studying the effect of system parameters and initial conditions. Some of the important properties of the system with parameter set, in which the system is hyperchaotic, such as Lyapunov exponents and Lyapunov dimension, dissipation and symmetry are found and discussed. In the next part of our work, a tracking controller for the proposed system is designed and then a synchronization control system for two identical systems is designed. The design procedure uses combination of a simple synergetic control with adaptive updating laws to identify the unknown parameters derived basing on Lyapunov theorem. Hardware implementation based on microcontroller unit (MCU) board is proposed and tested and used to experimentally validate the designed control and synchronization systems. As an application, the designed synchronization system is used as a secure analogue communication system. Using MATLAB, Simulation study for the control and synchronization systems is presented. The simulation and experimental study have been showed excellent results

    A novel smart energy management as a service over a cloud computing platform for nanogrid appliances

    Get PDF
    There will be a dearth of electrical energy in the world in the future due to exponential increase in electrical energy demand of rapidly growing world population. With the development of Internet of Things (IoT), more smart appliances will be integrated into homes in smart cities that actively participate in the electricity market by demand response programs to efficiently manage energy in order to meet this increasing energy demand. Thus, with this incitement, the energy management strategy using a price-based demand response program is developed for IoT-enabled residential buildings. We propose a new EMS for smart homes for IoT-enabled residential building smart devices by scheduling to minimize cost of electricity, alleviate peak-to-average ratio, correct power factor, automatic protective appliances, and maximize user comfort. In this method, every home appliance is interfaced with an IoT entity (a data acquisition module) with a specific IP address, which results in a wide wireless system of devices. There are two components of the proposed system: software and hardware. The hardware is composed of a base station unit (BSU) and many terminal units (TUs). The software comprises Wi-Fi network programming as well as system protocol. In this study, a message queue telemetry transportation (MQTT) broker was installed on the boards of BSU and TU. In this paper, we present a low-cost platform for the monitoring and helping decision making about different areas in a neighboring community for efficient management and maintenance, using information and communication technologies. The findings of the experiments demonstrated the feasibility and viability of the proposed method for energy management in various modes. The proposed method increases effective energy utilization, which in turn increases the sustainability of IoT-enabled homes in smart cities. The proposed strategy automatically responds to power factor correction, to protective home appliances, and to price-based demand response programs to combat the major problem of the demand response programs, which is the limitation of consumer’s knowledge to respond upon receiving demand response signals. The schedule controller proposed in this paper achieved an energy saving of 6.347 kWh real power per day, this paper achieved saving 7.282 kWh apparent power per day, and the proposed algorithm in our paper saved $2.3228388 per day

    A Novel Cooperative Controller for Inverters of Smart Hybrid AC/DC Microgrids

    Get PDF
    This paper presents a novel cooperative control technique concerning fully-distributed AC/DC microgrids. Distributed generation based on inverters has two types, i.e., Current Source Inverter (CSI), also referred to as PQ inverter, and Voltage Source Inverter (VSI). Both inverter forms have a two-layer coordination mechanism. This paper proposes a design method for the digital Proportional-Resonant (PR) controller that regulates the current inside an inverter. The inverters will improve the voltage quality of the microgrid while maintaining the average voltage of buses at the same desired level. There is comprehensive detail on the computations specific to resonant and proportional gains and digital resonance path coefficients. The paper includes a digital PR controller design and its analysis in the frequency domain. The analysis is based on the w-domain. The main contribution of this paper is the proposed method, which not only focuses on the transient response but also improves the steady-state response which smoothens the voltage; furthermore, all inverters are effectively involved to increase the capacity of the microgrid for better power management. The suggested cooperative control technique is used on an IEEE 14-bus system having fully distributed communication. The convincing outcomes indicate that the suggested control technique is an effectual means of regulating the microgrid’s voltage to obtain an evener and steady voltage profile. The microgrid comprises distributed resources and is used as the primary element to analyse power flow and quality indicators associated with a smart grid. Lastly, numerical simulation observations are utilised for substantiating the recommended algorithm

    A New Decentralized PQ Control for Parallel Inverters in Grid-Tied Microgrids Propelled by SMC-Based Buck–Boost Converters

    No full text
    Nowadays, the microgrid (MG) concept is regarded as an efficient approach to incorporating renewable generation resources into distribution networks. However, managing power flows to distribute load power among distribution generators (DGs) remains a critical focus, particularly during peak demand. The purpose of this paper is to control the adopted grid-tied MG performance and manage the power flow from/to the parallel DGs and the main grid using discrete-time active/reactive power (PQ) control based on digital proportional resonant (PR) controllers. The PR controller is used to eliminate harmonics by acting as a digital infinite-impulse response (IIR) filter with a high gain at the resonant frequency. Additionally, the applied PR controller has fast reference signal tracking, responsiveness to grid frequency drift, and no steady-state error. Moreover, this paper describes the application of robust nonlinear sliding mode control (SMC)-technique-based buck–boost (BB) converters. The sliding adaptive control scheme is applied to prevent the output voltage error that occurs during DG failure, load variations, or system parameter changes. This paper deals with two distinct case studies. The first one focuses on applying the proposed control for two parallel DGs with and without load-changing conditions. In the latter case, the MG is expanded to include five DGs (with and without DG failure). The proposed control technique has been compared with the droop control and model predictive control (MPC) techniques. As demonstrated by the simulation results in MATLAB software, the proposed method outperformed the others in terms of both performance analysis and the ability to properly share power between parallel DGs and the utility grid

    Consensus-based dispatch optimization of a microgrid considering meta-heuristic-based demand response scheduling and network packet loss characterization

    No full text
    The uncertainty inherent in power load forecasts represents a major factor in the mismatches between supply and demand in renewables-rich electricity networks, which consequently increases the energy bills and curtailed generation. As the transition to a power grid founded on the so-called grid-of-grids becomes more evident, the need for distributed control algorithms capable of handling computationally challenging problems in the energy sector does so as well. In this light, the consensus-based distributed algorithm has recently been shown to provide an effective platform for solving the complex energy management problem in microgrids. More specifically, in a microgrid context, the consensus-based distributed algorithm requires reliable information exchange with customers to achieve convergence. However, packet losses remain an important issue, which can potentially result in the failure of the overall system. In this setting, this paper introduces a novel method to effectively characterize such packet losses during information exchange between the customers and the microgrid operator, whilst solving the microgrid scheduling optimization problem for a multi-agent-based microgrid. More specifically, the proposed framework leverages the virulence optimization algorithm and the earth-worm optimization algorithm to optimally shift the energy consumption during peak periods to lower-priced off-peak hours. The effectiveness of the proposed method in minimizing the overall active power mismatches in the presence of packet losses has also been demonstrated based on benchmarking the results against the business-as-usual iterative scheduling algorithm. Also, the robustness of the overall meta-heuristic- and multi-agent-based method in producing optimal results is confirmed based on comparing the results obtained by several well-established meta-heuristic optimization algorithms, including the binary particle swarm optimization, the genetic algorithm, and the cuckoo search optimization
    corecore