8 research outputs found

    Acetate degradation at low pH by the moderately acidophilic sulfate reducer Acididesulfobacillus acetoxydans gen. nov. sp. nov.

    Get PDF
    The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmicb.2022.816605/full#supplementary-materialIn acid drainage environments, biosulfidogenesis by sulfate-reducing bacteria (SRB) attenuates the extreme conditions by enabling the precipitation of metals as their sulfides, and the neutralization of acidity through proton consumption. So far, only a handful of moderately acidophilic SRB species have been described, most of which are merely acidotolerant. Here, a novel species within a novel genus of moderately acidophilic SRB is described, Acididesulfobacillus acetoxydans gen. nov. sp. nov. strain INE, able to grow at pH 3.8. Bioreactor studies with strain INE at optimum (5.0) and low (3.9) pH for growth showed that strain INE alkalinized its environment, and that this was more pronounced at lower pH. These studies also showed the capacity of strain INE to completely oxidize organic acids to CO2, which is uncommon among acidophilic SRB. Since organic acids are mainly in their protonated form at low pH, which increases their toxicity, their complete oxidation may be an acid stress resistance mechanism. Comparative proteogenomic and membrane lipid analysis further indicated that the presence of saturated ether-bound lipids in the membrane, and their relative increase at lower pH, was a protection mechanism against acid stress. Interestingly, other canonical acid stress resistance mechanisms, such as a Donnan potential and increased active charge transport, did not appear to be active.This work was financed by ERC grants to AS (project 323009) and JS (project 694569), the research program TTW under project number 14797, which is financed by the Dutch Research Council (NWO) to IS-A, and a Gravitation grant (SIAM 024.002.002) of the Netherlands Ministry of Education, Culture and Science to AS and JS.info:eu-repo/semantics/publishedVersio

    Lachnotalea glycerini gen. nov., sp. nov., a novel anaerobe isolated from a nanofiltration unit treating anoxic groundwater

    No full text
    A strictly anaerobic bacterium, strain DLD10T, was isolated from a biofilm that developed on a nanofiltration membrane treating anoxic groundwater using glycerol as substrate. Cells were straight to slightly curved rods 0.2 - 0.5 µm in diameter and 1 - 3 µm in length, non-motile and non-spore forming. The optimum temperature and pH for growth were 30˚C and pH 7.0, respectively. Strain DLD10T could grow in the presence of 0.03 - 4.5% NaCl (w/v). Substrates utilised by strain DLD10T included glycerol and various carbohydrates (glucose, sucrose, fructose, mannose, arabinose, pectin, starch, xylan), which were mainly converted to ethanol, acetate, H2 and formate. Thiosulphate, sulphur and Fe (III) were used as electron acceptors, but sulphate, fumarate and nitrate not. The predominant membrane fatty acids were C16:0, iso-C17:1 and C17:1 ω8c. The DNA G + C content was 36.4 mol %. Strain DLD10T belongs to the family Lachnospiraceae and is distantly related to Clostridium populeti DSM 5832T, Hespellia porcina DSM 15481T, and Robinsoniella peoriensis CCUG 48729T (93% 16S rRNA gene identity). Physiological characteristics and phylogenetic analysis revealed that strain DLD10T is a representative of a novel species of a new genus, for which the name Lachnotalea glycerini gen. nov., sp. nov., is proposed. The type strain of Lachnotalea glycerini is DLD10T (=DSM 28816T = JCM 30818T

    Long-term performance and fouling analysis of full-scale direct nanofiltration (NF) installations treating anoxic groundwater

    No full text
    Long-term performance and fouling behavior of four full-scale nanofiltration (NF) plants, treating anoxic groundwater at 80% recovery for drinking water production, were characterized and compared with oxic NF and reverse osmosis systems. Plant operating times varied between 6 and 10 years and pretreatment was limited to 10 µm pore size cartridge filtration and antiscalant dosage (2–2.5 mg L-1) only. Membrane performance parameters normalized pressure drop (NPD), normalized specific water permeability (Kw) and salt retention generally were found stable over extended periods of operation (>6 months). Standard acid–base cleanings (once per year or less) were found to be sufficient to maintain satisfying operation during direct NF of the described iron rich (=8.4 mg L-1) anoxic groundwaters. Extensive autopsies of eight NF membrane elements, which had been in service since the plant startup (6–10 years), were performed to characterize and quantify the material accumulated in the membrane elements. Investigations using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), total organic carbon (TOC) and adenosine triphosphate (ATP) measurements revealed a complex mixture of organic, biological and inorganic materials. The fouling layers that developed during half to one year of operation without chemical cleaning were very thin

    Isolation and characterization of Sphingomonadaceae from fouled membranes

    No full text
    Membrane filtration systems are widely applied for the production of clean drinking water. However, the accumulation of particles on synthetic membranes leads to fouling. Biological fouling (i.e., biofouling) of reverse osmosis and nanofiltration membranes is difficult to control by existing cleaning procedures. Improved strategies are therefore needed. The bacterial diversity on fouled membranes has been studied, especially to identify bacteria with specialized functions and to develop targeted approaches against these microbes. Previous studies have shown that Sphingomonadaceae are initial membrane colonizers that remain dominant while the biofilm develops. Here, we characterized 21 Sphingomonadaceae isolates, obtained from six different fouled membranes, to determine which physiological traits could contribute to colonization of membrane surfaces. Their growth conditions ranged from temperatures between 8 and 42 oC, salinity between 0.0 and 5.0% w/v NaCl, pH from 4 and 10, and all isolates were able to metabolize a wide range of substrates. The results presented here show that Sphingomonadaceae membrane isolates share many features that are uncommon for other members of the Sphingomonadaceae family: all membrane isolates are motile and their tolerance for different temperatures, salt concentrations, and pH is high. Although relative abundance is an indicator of fitness for a whole group, for the Sphingomonadaceae it does not reveal the specific physiological traits that are required for membrane colonization. This study, therefore, adds to more fundamental insights in membrane biofouling.</p

    Isolation and characterization of Sphingomonadaceae from fouled membranes

    No full text
    Membrane filtration systems are widely applied for the production of clean drinking water. However, the accumulation of particles on synthetic membranes leads to fouling. Biological fouling (i.e., biofouling) of reverse osmosis and nanofiltration membranes is difficult to control by existing cleaning procedures. Improved strategies are therefore needed. The bacterial diversity on fouled membranes has been studied, especially to identify bacteria with specialized functions and to develop targeted approaches against these microbes. Previous studies have shown that Sphingomonadaceae are initial membrane colonizers that remain dominant while the biofilm develops. Here, we characterized 21 Sphingomonadaceae isolates, obtained from six different fouled membranes, to determine which physiological traits could contribute to colonization of membrane surfaces. Their growth conditions ranged from temperatures between 8 and 42 oC, salinity between 0.0 and 5.0% w/v NaCl, pH from 4 and 10, and all isolates were able to metabolize a wide range of substrates. The results presented here show that Sphingomonadaceae membrane isolates share many features that are uncommon for other members of the Sphingomonadaceae family: all membrane isolates are motile and their tolerance for different temperatures, salt concentrations, and pH is high. Although relative abundance is an indicator of fitness for a whole group, for the Sphingomonadaceae it does not reveal the specific physiological traits that are required for membrane colonization. This study, therefore, adds to more fundamental insights in membrane biofouling.</p
    corecore