10,198 research outputs found

    Covariant spinor representation of iosp(d,2/2)iosp(d,2/2) and quantization of the spinning relativistic particle

    Get PDF
    A covariant spinor representation of iosp(d,2/2)iosp(d,2/2) is constructed for the quantization of the spinning relativistic particle. It is found that, with appropriately defined wavefunctions, this representation can be identified with the state space arising from the canonical extended BFV-BRST quantization of the spinning particle with admissible gauge fixing conditions after a contraction procedure. For this model, the cohomological determination of physical states can thus be obtained purely from the representation theory of the iosp(d,2/2)iosp(d,2/2) algebra.Comment: Updated version with references included and covariant form of equation 1. 23 pages, no figure

    A class of quadratic deformations of Lie superalgebras

    Full text link
    We study certain Z_2-graded, finite-dimensional polynomial algebras of degree 2 which are a special class of deformations of Lie superalgebras, which we call quadratic Lie superalgebras. Starting from the formal definition, we discuss the generalised Jacobi relations in the context of the Koszul property, and give a proof of the PBW basis theorem. We give several concrete examples of quadratic Lie superalgebras for low dimensional cases, and discuss aspects of their structure constants for the `type I' class. We derive the equivalent of the Kac module construction for typical and atypical modules, and a related direct construction of irreducible modules due to Gould. We investigate in detail one specific case, the quadratic generalisation gl_2(n/1) of the Lie superalgebra sl(n/1). We formulate the general atypicality conditions at level 1, and present an analysis of zero-and one-step atypical modules for a certain family of Kac modules.Comment: 26pp, LaTeX. Original title: "Finite dimensional quadratic Lie superalgebras"; abstract re-worded; text clarified; 3 references added; rearrangement of minor appendices into text; new subsection 4.

    Parallelising wavefront applications on general-purpose GPU devices

    Get PDF
    Pipelined wavefront applications form a large portion of the high performance scientific computing workloads at supercomputing centres. This paper investigates the viability of graphics processing units (GPUs) for the acceleration of these codes, using NVIDIA's Compute Unified Device Architecture (CUDA). We identify the optimisations suitable for this new architecture and quantify the characteristics of those wavefront codes that are likely to experience speedups

    Experiences with porting and modelling wavefront algorithms on many-core architectures

    Get PDF
    We are currently investigating the viability of many-core architectures for the acceleration of wavefront applications and this report focuses on graphics processing units (GPUs) in particular. To this end, we have implemented NASA’s LU benchmark – a real world production-grade application – on GPUs employing NVIDIA’s Compute Unified Device Architecture (CUDA). This GPU implementation of the benchmark has been used to investigate the performance of a selection of GPUs, ranging from workstation-grade commodity GPUs to the HPC "Tesla” and "Fermi” GPUs. We have also compared the performance of the GPU solution at scale to that of traditional high perfor- mance computing (HPC) clusters based on a range of multi- core CPUs from a number of major vendors, including Intel (Nehalem), AMD (Opteron) and IBM (PowerPC). In previous work we have developed a predictive “plug-and-play” performance model of this class of application running on such clusters, in which CPUs communicate via the Message Passing Interface (MPI). By extending this model to also capture the performance behaviour of GPUs, we are able to: (1) comment on the effects that architectural changes will have on the performance of single-GPU solutions, and (2) make projections regarding the performance of multi-GPU solutions at larger scale

    Tensor Rank, Invariants, Inequalities, and Applications

    Full text link
    Though algebraic geometry over C\mathbb C is often used to describe the closure of the tensors of a given size and complex rank, this variety includes tensors of both smaller and larger rank. Here we focus on the n×n×nn\times n\times n tensors of rank nn over C\mathbb C, which has as a dense subset the orbit of a single tensor under a natural group action. We construct polynomial invariants under this group action whose non-vanishing distinguishes this orbit from points only in its closure. Together with an explicit subset of the defining polynomials of the variety, this gives a semialgebraic description of the tensors of rank nn and multilinear rank (n,n,n)(n,n,n). The polynomials we construct coincide with Cayley's hyperdeterminant in the case n=2n=2, and thus generalize it. Though our construction is direct and explicit, we also recast our functions in the language of representation theory for additional insights. We give three applications in different directions: First, we develop basic topological understanding of how the real tensors of complex rank nn and multilinear rank (n,n,n)(n,n,n) form a collection of path-connected subsets, one of which contains tensors of real rank nn. Second, we use the invariants to develop a semialgebraic description of the set of probability distributions that can arise from a simple stochastic model with a hidden variable, a model that is important in phylogenetics and other fields. Third, we construct simple examples of tensors of rank 2n12n-1 which lie in the closure of those of rank nn.Comment: 31 pages, 1 figur

    On the acceleration of wavefront applications using distributed many-core architectures

    Get PDF
    In this paper we investigate the use of distributed graphics processing unit (GPU)-based architectures to accelerate pipelined wavefront applications—a ubiquitous class of parallel algorithms used for the solution of a number of scientific and engineering applications. Specifically, we employ a recently developed port of the LU solver (from the NAS Parallel Benchmark suite) to investigate the performance of these algorithms on high-performance computing solutions from NVIDIA (Tesla C1060 and C2050) as well as on traditional clusters (AMD/InfiniBand and IBM BlueGene/P). Benchmark results are presented for problem classes A to C and a recently developed performance model is used to provide projections for problem classes D and E, the latter of which represents a billion-cell problem. Our results demonstrate that while the theoretical performance of GPU solutions will far exceed those of many traditional technologies, the sustained application performance is currently comparable for scientific wavefront applications. Finally, a breakdown of the GPU solution is conducted, exposing PCIe overheads and decomposition constraints. A new k-blocking strategy is proposed to improve the future performance of this class of algorithm on GPU-based architectures
    corecore