56 research outputs found
Structure and magnetic properties of nanocrystalline Fe-Mo alloys prepared by mechanosynthesis
Nanocrystalline samples of Fe8 0 Mo 20 and Fe50 Mo 50 alloys were prepared by the mechanical milling method. The structure, lattice parameters, and crystallite size were determined by the X -ray diffraction . The magnetic properties of the milled products were determined by the M ossbauer spectroscopy .
It was observed that in the case of the Fe80 Mo 20 alloy a solid solutio n of Mo in Fe was formed with the lattice parameters of Fe increasing from 0.28659 nm to 0.29240 nm and the crystalli te size decreasing from 250 nm to 20 nm. In the case of the Fe50 Mo 50 alloy there were no clear changes in values of the lattice parameters of Fe and Mo during the millin g pro cess, but the crystallite size decreased from 200 nm to 15 nm. M ossbauer spectra revealed different magnetic phases in the mechanosynthesized Fe-Mo samples. In the case of the Fe80 Mo 20 alloy , the spectrum for the milled mi xture indicated the formation of a solid solution. In contrast, for the Fe50 Mo50 the spectrum indicated the disappeara ce of the ferromagnetic phase
Strukture and Mossbauer spectroscopy studies of multiferroic mechanically activated aurivillius compounds
X-ray di raction and 57Fe Mössbauer spectroscopy were applied as complementary methods to investigate the
structure and hyper ne interactions of the Aurivillius compounds prepared by mechanical activation and subsequent
heat treatment. Preliminary milling of precursors enhanced the di usion process and pure Aurivillius compounds
were obtained at lower temperature as compared with conventional solid-state sintering technology (lower at least
by 50 K). All the investigated Aurivillius compounds are paramagnetic materials at room temperature
Structure and hyperfine interactions in Aurivillius Bi9Ti 3Fe5O27 conventionally sintered compound
The structure and hyperfine interactions in the Bi9Ti3Fe5O27 Aurivillius compound were studied using
X-ray diffraction and Mössbauer spectroscopy. Samples were prepared by the conventional solid-state sintering
method at various temperatures. An X-ray diffraction analysis proved that the sintered compounds formed
single phases at temperature above 993 K. Mössbauer measurements have been carried out at room and liquid
nitrogen temperatures. Room-temperature Mössbauer spectrum of the Bi9Ti3Fe5O27 compound confirmed its
paramagnetic properties. However, low temperature measurements revealed the additional paramagnetic phase
besides the antiferromagnetic one
X-Ray diffraction, mossbauer spectroscopy, and magnetoelectric effect studies of multiferroic Bi5Ti3FeO15 ceramics
Bi5Ti3FeO15 ceramics belongs to multiferroic class of materials. In this work it was prepared by solidstate
sintering method and investigated by X-ray di raction, Mössbauer spectroscopy, and magnetoelectric effect
measurements. As it was proved by X-ray di raction studies the single-phase Bi5Ti3FeO15 compound was
obtained. The Mössbauer investigations revealed paramagnetic character of the compound at room temperature
as well as at 80 K. Magnetoelectric measurements were carried out at room temperature using lock-in
dynamic method and they proved presence of magnetoelectric coupling in this material. Additional magnetoelectric studies were carried out after subsequent electric poling of the sample. It was found that the maximum value of the coupling coe cient was almost twice bigger than in the case without the initial poling and reached a value of ME 20.7 mV cm1 Oe1
Structure and magnetic properties of Bi5Ti3FeO15 ceramics prepared by sintering, mechanical activation and EDAMM process. A comparative study
Three different methods were used to obtain Bi5Ti3FeO15 ceramics, i.e. solid-state sintering, mechanical activation (MA) with subsequent thermal treatment, and electrical discharge assisted mechanical milling (EDAMM). The structure and magnetic properties of produced Bi5Ti3FeO15 samples were characterized using X-ray diffraction and Mössbauer spectroscopy. The purest Bi5Ti3FeO15 ceramics was obtained by standard solid-state sintering method. Mechanical milling methods are attractive because the Bi5Ti3FeO15 compound may be formed at lower temperature or without subsequent thermal treatment. In the case of EDAMM process also the time of processing is significantly shorter in comparison with solid-state sintering method. As revealed by Mössbauer spectroscopy, at room temperature the Bi5Ti3FeO15 ceramics produced by various methods is in paramagnetic state
Structural order and magnetic anisotropy transition in Co/Fe multilayers
Co/Fe multilayers were electron-beam evaporated in ultrahigh vacuum onto quartz substrates keeping the Co layer thickness (10 nm) constant and changing that of Fe (10-30 nm). For Fe layer thicknesses up to 24 nm, the magnetization substantially lies in the film plane and shows a uniaxial magnetic anisotropy. The coercive field measured along the easy axis is similar to10 Oe, and the x-ray reflectivity patterns show a superlattice behavior. For a Fe layer thickness equal to 30 nm, the in-plane texture strongly decreases, the coercive field increases up to similar to100 Oe, the magnetization direction forms an out-of-plane angle of similar to36degrees and a stripe magnetic domain structure takes place. The observed in-plane anisotropy and the changing in the magnetic order as a function of the iron layer thickness is discussed and justified, assuming that the growth of the first Co layer occurs by the nucleation of ordered zones, influencing the subsequent layer order via exchange interaction
Structure and hyperfine interactions of multiferroic Bim+1Ti3Fem-3O3m+3 ceramics prepared by mechanical activation
The structure and hyperfine interactions in the Bi5Ti3FeO15, Bi6Ti3Fe2O18 and Bi7Ti3Fe3O21 multiferroic ceramics were studied using X-ray diffraction and Mössbauer spectroscopy. Samples were prepared by mechanical activation process in a high-energy ball mill from a mixture of TiO2, Fe2O3 and Bi2O3 oxides as polycrystalline precursor materials. The mechanical milling process was completed by thermal processing. A pure single-phased material was obtained in the case of Bi7Ti3Fe3O21 compound. The proposed mechanical activation technology allows to produce the Aurivillius compounds at lower temperature, by about 50 K, as compared to the solid-state sintering method
Process of Amorphization Induced by Mechanical Alloying of Iron with Tungsten and Niobium
Mechanical alloying method was used to synthesise powders of iron with tungsten and niobium. Mössbauer spectroscopy and X-ray diffraction have been applied to monitor the progress in solid-state reactions. In the case of Fe-W system, exhibiting a positive heat of mixing, no trace of amorphization was observed for 20 and 33 at.% of W, as the calculations of phase diagram (CALPHAD) method suggest. During the mechanical alloying process, two solid solutions Fe(W) and W(Fe) were obtained. Mössbauer measurements allowed to recognise the Fe(W) solid solution as a ferromagnetic phase, while the W(Fe) solid solution as a paramagnetic one. In the case of Fe-Nb system, exhibiting a negative heat of mixing, single phase amorphous alloys were synthesised during mechanical alloying of iron with 48 and 64 at.% of Nb. For both investigated compositions, the final products of mechanical alloying processes were amorphous paramagnetic alloys
Process of Amorphization Induced by Mechanical Alloying of Iron with Tungsten and Niobium
Mechanical alloying method was used to synthesise powders of iron with tungsten and niobium. Mössbauer spectroscopy and X-ray diffraction have been applied to monitor the progress in solid-state reactions. In the case of Fe-W system, exhibiting a positive heat of mixing, no trace of amorphization was observed for 20 and 33 at.% of W, as the calculations of phase diagram (CALPHAD) method suggest. During the mechanical alloying process, two solid solutions Fe(W) and W(Fe) were obtained. Mössbauer measurements allowed to recognise the Fe(W) solid solution as a ferromagnetic phase, while the W(Fe) solid solution as a paramagnetic one. In the case of Fe-Nb system, exhibiting a negative heat of mixing, single phase amorphous alloys were synthesised during mechanical alloying of iron with 48 and 64 at.% of Nb. For both investigated compositions, the final products of mechanical alloying processes were amorphous paramagnetic alloys
Recommended from our members
On the synthesis and cation distribution of aluminum-substituted spinel-related lithium ferrite
Spinel-related Al-substituted Li0.5Fe2.5O4 has been synthesized by sintering a mixture of Al-substituted corundum-related alpha-Fe2O3 and Li2CO3 at 700 degreesC which is ca. 450-500 degreesC lower than the temperatures normally used to prepare the material by conventional ceramic methods. The cation distribution in the material was investigated with X-ray diffraction, Mossbauer spectroscopy and magnetic measurements. Rietveld refinement of the X-ray diffraction data shows the Al3+ ions to substitute for both Fe3+ and Li+ ions on octahedral B-sites while the displaced Li+ ions substitute for Fe3+ ones at tetrahedral A-sites. This structural model is consistent with Mossbauer and magnetic data
- …