117 research outputs found

    Structure and hyperfine interactions in multiferroic Aurivillius Bi m+1Ti3Fe O-m-3(3m+3) compounds prepared by mechanical activation

    Get PDF
    The aim of the study was to determine the structure and hyperfine interactions of Bim+1Ti3Fem3O3m+3 multiferroic Aurivillius compounds prepared by mechanical activation process. X-ray diffraction and Mössbauer spectroscopy were applied as complementary methods. After the process of mechanical milling, desired Aurivillius phases were not formed, thus, thermal treatment needed to be applied. Heating the product of mechanical activation up to 993 K allowed to obtain Aurivillius phases with relatively large amount of non-reacted hematite. However, after the material was annealed at an elevated temperature of 1073 K, the content of not fully synthesized hematite was significantly reduced. Mössbauer spectroscopy confirmed that Aurivillius compounds remain in paramagnetic state at room temperature

    Structure and magnetic properties of nanocrystalline Fe-Mo alloys prepared by mechanosynthesis

    Get PDF
    Nanocrystalline samples of Fe8 0 Mo 20 and Fe50 Mo 50 alloys were prepared by the mechanical milling method. The structure, lattice parameters, and crystallite size were determined by the X -ray diffraction . The magnetic properties of the milled products were determined by the M ossbauer spectroscopy . It was observed that in the case of the Fe80 Mo 20 alloy a solid solutio n of Mo in Fe was formed with the lattice parameters of Fe increasing from 0.28659 nm to 0.29240 nm and the crystalli te size decreasing from 250 nm to 20 nm. In the case of the Fe50 Mo 50 alloy there were no clear changes in values of the lattice parameters of Fe and Mo during the millin g pro cess, but the crystallite size decreased from 200 nm to 15 nm. M ossbauer spectra revealed different magnetic phases in the mechanosynthesized Fe-Mo samples. In the case of the Fe80 Mo 20 alloy , the spectrum for the milled mi xture indicated the formation of a solid solution. In contrast, for the Fe50 Mo50 the spectrum indicated the disappeara ce of the ferromagnetic phase

    Structure and some magnetic properties of (BiFeO3)x-(BaTiO3)1-x solid solutions prepared by solid-state sintering

    Get PDF
    This paper presents the results of the study on structure and magnetic properties of the perovskite-type (BiFeO3)x-(BaTiO3)1-x solid solutions. The samples differing in the chemical composition (x = 0.9, 0.8, and 0.7) were produced according to the conventional solid-state sintering method from the mixture of powders. Moreover, three different variants of the fabrication process differing in the temperatures and soaking time were applied. The results of X-ray diffraction (XRD), Mössbauer spectroscopy (MS), and vibrating sample magnetometry (VSM) were collected and compared for the set of the investigated materials. The structural transformation from rhombohedral to cubic symmetry was observed for the samples with x = 0.7. With increasing of BaTiO3 concentration Mössbauer spectra become broadened reflecting various configurations of atoms around 57Fe probes. Moreover, gradual decreasing of the average hyperfine magnetic field and macroscopic magnetization were observed with x decreasing

    Strukture and Mossbauer spectroscopy studies of multiferroic mechanically activated aurivillius compounds

    Get PDF
    X-ray di raction and 57Fe Mössbauer spectroscopy were applied as complementary methods to investigate the structure and hyper ne interactions of the Aurivillius compounds prepared by mechanical activation and subsequent heat treatment. Preliminary milling of precursors enhanced the di usion process and pure Aurivillius compounds were obtained at lower temperature as compared with conventional solid-state sintering technology (lower at least by 50 K). All the investigated Aurivillius compounds are paramagnetic materials at room temperature

    Structure and hyperfine interactions in Aurivillius Bi9Ti 3Fe5O27 conventionally sintered compound

    Get PDF
    The structure and hyperfine interactions in the Bi9Ti3Fe5O27 Aurivillius compound were studied using X-ray diffraction and Mössbauer spectroscopy. Samples were prepared by the conventional solid-state sintering method at various temperatures. An X-ray diffraction analysis proved that the sintered compounds formed single phases at temperature above 993 K. Mössbauer measurements have been carried out at room and liquid nitrogen temperatures. Room-temperature Mössbauer spectrum of the Bi9Ti3Fe5O27 compound confirmed its paramagnetic properties. However, low temperature measurements revealed the additional paramagnetic phase besides the antiferromagnetic one

    Magnetoelectric effect in (BiFeO3)x-(BaTiO3)1-x solid solutions

    Get PDF
    The aim of the present work was to study magnetoelectric effect (ME) in (BiFeO3)x-(BaTiO3)1-x solid solutions in terms of technological conditions applied in the samples fabrication process. The rapidly growing interest in these materials is caused by their multiferroic behaviour, i.e. coexistence of both electric and magnetic ordering. It creates possibility for many innovative applications, e.g. in steering the magnetic memory by electric field and vice versa. The investigated samples of various chemical compositions (i.e. x = 0.7, 0.8 and 0.9) were prepared by the solid-state sintering method under three sets of technological conditions differing in the applied temperature and soaking time. Measurements of the magnetoelectric voltage coefficient αME were performed using a dynamic lock-in technique. The highest value of αME was observed for 0.7BiFeO3-0.3BaTiO3 solid solution sintered at the highest temperature (T = 1153 K) after initial electrical poling despite that the soaking time was reduced 10 times in this case

    X-Ray diffraction, mossbauer spectroscopy, and magnetoelectric effect studies of multiferroic Bi5Ti3FeO15 ceramics

    Get PDF
    Bi5Ti3FeO15 ceramics belongs to multiferroic class of materials. In this work it was prepared by solidstate sintering method and investigated by X-ray di raction, Mössbauer spectroscopy, and magnetoelectric effect measurements. As it was proved by X-ray di raction studies the single-phase Bi5Ti3FeO15 compound was obtained. The Mössbauer investigations revealed paramagnetic character of the compound at room temperature as well as at 80 K. Magnetoelectric measurements were carried out at room temperature using lock-in dynamic method and they proved presence of magnetoelectric coupling in this material. Additional magnetoelectric studies were carried out after subsequent electric poling of the sample. It was found that the maximum value of the coupling coe cient was almost twice bigger than in the case without the initial poling and reached a value of ME 20.7 mV cm1 Oe1

    Magnetoelectric Effect in Ceramics Based on Bismuth Ferrite

    Get PDF
    Solid-state sintering method was used to prepare ceramic materials based on bismuth ferrite, i.e., (BiFeO3)1 − x–(BaTiO3)x and Bi1 − xNdxFeO3 solid solutions and the Aurivillius Bi5Ti3FeO15 compound. The structure of the materials was examined using X-ray diffraction, and the Rietveld method was applied to phase analysis and structure refinement. Magnetoelectric coupling was registered in all the materials using dynamic lock-in technique. The highest value of magnetoelectric coupling coefficient αME was obtained for the Bi5Ti3FeO15 compound (αME ~ 10 mVcm−1 Oe−1). In the case of (BiFeO3)1 − x–(BaTiO3)x and Bi1 − xNdxFeO3 solid solutions, the maximum αME is of the order of 1 and 2.7 mVcm−1 Oe−1, respectively. The magnitude of magnetoelectric coupling is accompanied with structural transformation in the studied solid solutions. The relatively high magnetoelectric effect in the Aurivillius Bi5Ti3FeO15 compound is surprising, especially since the material is paramagnetic at room temperature. When the materials were subjected to a preliminary electrical poling, the magnitude of the magnetoelectric coupling increased 2–3 times

    Hyperfine interactions and irreversible magnetic behavior in multiferroic aurivillius compounds

    Get PDF
    In this work investigations of structure and magnetic properties of conventionally sintered Bim+1Ti3Fem–3O3m+3 compounds with 4 ≤ m ≤ 8 were performed using X-ray diffraction, Mössbauer spectroscopy and vibrating sample magnetometry. Room-temperature Mössbauer spectra of the compounds correspond to a paramagnetic state, however, low temperature measurements (80 K) reveal the antiferromagnetic state with a residual paramagnetic phase. Temperature dependencies of magnetic susceptibility, χσ(T), provided magnetic ordering temperatures and revealed an irreversibility in Aurivillius compounds with m ≥ 5. In the case of Bi5Ti3FeO15 compound the χσ(T) dependence shows a paramagnetic behavior down to 2 K. The Bi6Ti3Fe2O18 compound reveals a magnetic ordering at 11 K. The compounds with m = 6–8 show a magnetic ordering at temperatures higher than 200 K. Highly irreversible character of their temperature dependencies of χσ indicates a spin-glass type disordered magnetism with frustration due to a random distribution of Fe on Ti at their sites

    X-ray diffraction, Mossbauer spectroscopy, and magnetoelectric effect studies of (BiFeO3)x-(BaTiO3)1-x solid solutions

    Get PDF
    In this work the hyperfine interactions in (BiFeO3)x-(BaTiO3)1–x solid solutions with relation to their structural properties have been investigated. X-ray diffraction, Mössbauer spectroscopy and magnetoelectric effect measurements have been used for studies of sintered (BiFeO3)x-(BaTiO3)1–x solid solutions with x = 0.9, 0.8 and 0.7. With increasing contents of BaTiO3, the structural transformation from rhombohedral to cubic was observed. The weakening of the hyperfine magnetic fields accompanied by this transformation. On the other hand, the increasing amount of BaTiO3 caused an increase of the magnetoelectric effect
    • …
    corecore