14 research outputs found

    Normal sleep bouts are not essential for C. elegans survival and FoxO is important for compensatory changes in sleep

    Get PDF
    Additional file 6: Decreased lag-2 function does not slow vulval development. The progeny of wild type and lag-2(q420) animals raised at 25.5 °C were selected at the L4 stage, prior to lethargus entry. Vulval eversion was scored after 3 h; the percentage of animals completing vulval eversion was recorded. Significance was assessed by student’s two-tailed t-test p value < 0.5; error bars represents SEM from 3 trials. Total number of animals: wild type n = 45 and lag-2(q420) n = 42

    Distinct unfolded protein responses mitigate or mediate effects of nonlethal deprivation of C. elegans sleep in different tissues

    No full text
    Abstract Background Disrupting sleep during development leads to lasting deficits in chordates and arthropods. To address lasting impacts of sleep deprivation in Caenorhabditis elegans, we established a nonlethal deprivation protocol. Results Deprivation triggered protective insulin-like signaling and two unfolded protein responses (UPRs): the mitochondrial (UPRmt) and the endoplasmic reticulum (UPRER) responses. While the latter is known to be triggered by sleep deprivation in rodent and insect brains, the former was not strongly associated with sleep deprivation previously. We show that deprivation results in a feeding defect when the UPRmt is deficient and in UPRER-dependent germ cell apoptosis. In addition, when the UPRER is deficient, deprivation causes excess twitching in vulval muscles, mirroring a trend caused by loss of egg-laying command neurons. Conclusions These data show that nonlethal deprivation of C. elegans sleep causes proteotoxic stress. Unless mitigated, distinct types of deprivation-induced proteotoxicity can lead to anatomically and genetically separable lasting defects. The relative importance of different UPRs post-deprivation likely reflects functional, developmental, and genetic differences between the respective tissues and circuits

    MOESM2 of Normal sleep bouts are not essential for C. elegans survival and FoxO is important for compensatory changes in sleep

    No full text
    Additional file 2: daf-16 is not required for hypertonic stress resistance in osm-7; osm-11 animals. Hypertonic stress resistance was examined in young adult animals moved to 500mM NaCl NGM plates for 10 min. osm-7(tm2256) and osm-11(rt142) are complete loss of function alleles for Notch DOS family co-ligands. daf-16(mu86) is a partial loss of function allele. Loss of Notch DOS co-ligands results in resistance to hypertonic stress, based on inability to move, spontaneously or upon prodding, after 10 min on 500mM NaCl NGM plates. Partial loss of daf-16 function does not alter hypertonic resistance in these animals. n = 40 animals for all genotypes

    MOESM7 of Normal sleep bouts are not essential for C. elegans survival and FoxO is important for compensatory changes in sleep

    No full text
    Additional file 7: Increased lag-2 expression in adults induces anachronistic sleep bouts. Animals carrying hsp::empty, hsp::lag-2 cDNA transgenes, or wild type animals were heat shocked for 1.5 h at 34 °C. After heat shock, animals were allowed to recover at 20 °C for an additional 1 h to recover from stress-induced quiescence (shown in first set of columns). Sleep was scored for all genotypes within 15 min, based on the absence of feeding and movement. Inappropriate sleep in adult animals expressing hsp::lag-2cDNA transgene was reversible, disappearing by 2 h post-heat shock. For all genotypes, n = 40 animals; error bars represent the SEM from 2 independent trials
    corecore