209 research outputs found

    Prediction of solid–binder affinity in dry and aqueous systems: Work of adhesion approach vs. ideal tensile strength approach

    Get PDF
    Wet granulation process requiresthe addition of a coating agentor binder, typicallycomposed of surfactants such as hydroxypropyl-methylcellulose (HPMC), water and a small amount offiller such as stearic acid (SA). In dry granulation however, the coating agent is added to the system in the form offine solid particles. In both cases, a successful granulation requires good affinity between host and guest particles. In this study, we compare two approaches to predict the binder–substrate affinity in dry and in aqueous media, one based on the work of adhesion and the other based on the ideal tensile strength (Rowe, 1988). The novelties of this paper are four folds. First, the equations used in both approaches are generalized and rewritten as a function of the Hildebrand solubility parameter δ.δ is obtained from molecular simulations or predicted from HSPiP group contribution method. Secondly, a correlation between δ and the experimental surface tension γ is established for cellulose de-rivative (such as HPMC and ethyl cellulose). Thirdly, the concept of ideal tensile strength, originally formalized by Gardon (1967) for binary systems, is extended to ternary systems and applied for granulation in aqueous media. Fourthly, the approaches are tested for various systems and compared to experimental observations. For dry bi-nary systems, predicted adhesive and cohesive properties agree with literature experimental observations, but the work of adhesion approach performs better than the ideal tensilestrength approach. Both approaches predict thatHPMCisa good binderfor microcrystallinecellulose (MCC).The results alsoindicate that polyethyleneglycol 400(PEG400)has a good affinity with HPMC and stearic acid. For ternary aqueous systems, the results fully agree with the observations of Laboulfie et al.(2013)

    Stearic acid crystals stabilization in aqueous polymeric dispersions

    Get PDF
    In wet granulation processes, coatings or binders generally consist of mixtures of various raw materials that confer or enhance specific properties to the final product. Typically, a coating solution is composed of water, film forming polymer (such as hydroxypropyl-methylcellulose, HPMC) and filler (such as stearic acid, SA). One of the important issues in wet granulation processes is the stability of the aqueous coating (or binder) dispersion. An unstable dispersion results in the agglomeration of the colloidal particles, thereby affecting the film coating properties and eventually the coating process. In this study, we use dissipative particle dynamics (DPD) to elucidate the structure of aqueous colloidal formulations. DPD is a coarse-grained molecular dynamics simulation method where the materials are described as a set of soft beads interacting according to the Flory–Huggins (1942) model. The DPD simulation results are compared to experimental results obtained by Cryogenic-SEM and particle size distribution analysis. It is shown from the DPD simulation results that the HPMC polymer is able to form a layer that covers SA particles and thus produces stable colloids. Microcrystalline cellulose (MCC) also covers SA agglomerate but it is not able to diffuse inside its inner core. The agglomerate structure is characterized via the density distribution and the polymer chain end-to-end distance. Experimental results show similar trends; particle size distribution analysis shows that in the presence of HPMC, the majority of SA particles are below 1 μm in diameter, also MCC is able to prevent the formation of big SA agglomerates and may be a better stabilizing agent than HPMC. SEM images reveal that HPMC surrounds SA agglomerates with a hatching textured film and anchors on their surface

    Structure of aqueous colloidal formulations used in coating and agglomeration processes: Mesoscale model and experiments

    Get PDF
    In coating and agglomeration processes, the properties of the final product, such as solubility, size distribution, permeability and mechanical resistance, depend on the process parameters and the binder (or coating) solution properties. These properties include the type of solvent used, the binder composition and the affinity between its constituents. In this study, we used mesoscale simulations to investigate the structure of agglomerates formed in aqueous colloidal formulations used in coating and granulation processes. The formulations include water, a film forming polymer (Hydroxypropyl-methylcellulose, HPMC), a hydrophobic filler (Stearic acid, SA) and a plasticizer (Polyethylene glycol, PEG). For the simulations, dissipative particle dynamics (DPD) and a coarse-grained approach were used. In the DPD method, the materials are described as a set of soft beads interacting according to the Flory–Huggins model. The repulsive interactions between the beads were evaluated using the solubility parameter (δ) as input, where δ was calculated by all-atom molecular dynamics. The DPD simulation results were compared to experimental results obtained by cryogenic-SEM and particle size distribution analysis. DPD simulation results showed that the HPMC polymer is able to adsorb in depth into the inner core of SA particle and covers it with a thick layer. We also observed that the structure of HPMC-SA mixture varies under different amounts of SA. For high amounts of SA, HPMC is unable to fully stabilize SA. Affinity between the binder materials was deduced from the DPD simulations and compared with Jarray et al. (2014) theoretical affinity model. Experimental results presented similar trends; particle size distribution analysis showed that for low percentage of SA (below 10% w/w) and in the presence of HPMC, the majority of SA particles are below 1 μm in diameter. Cryogenic-SEM images reveal that SA crystals are covered and surrounded by HPMC polymer. SA crystals remain dispersed and small in size for low percentages of SA

    Wet granular flow control through liquid induced cohesion

    Get PDF
    Liquid has a significant effect on the flow of wet granular assemblies. We explore the effects of liquid induced cohesion on the flow characteristics of wet granular materials. We propose a cohesion-scaling approach that enables invariant flow characteristics for different particles sizes in rotating drums. The strength of capillary forces between the particles is significantly reduced by making the glass beads hydrophobic via chemical silanization. Main results of rotating drum experiments are that liquid-induced cohesion decreases both the width of the flowing region and the velocity of the particles at the free surface, but increases the width of the creeping region as well as the dynamic angle of repose. Also, the local granular temperature in the flowing region decreases with an increase of the capillary force. The scaling methodology in the flow regimes considered (rolling and cascading regimes) yields invariant bed flow characteristics for different particle sizes.Comment: Reviewed with minor comments and resubmitted to Powder Technology. 35 pages, 20 figure

    Mesoscopic modeling, experimental and thermodynamic approach for the prediction of agglomerates structures in granulation processes

    Get PDF
    Wet granulation process requires the addition of a coating agent or binder, typically composed of surfactants, water, plasticizers and fillers. In dry granulation however, the coating agent is added to the system in the form of fine solid particles. Our goals are to investigate the particles behaviour and agglomeration mechanism in dry and aqueous systems at the micro and meso scales, and also, to develop predictive methodologies and theoretical tools of investigation allowing to choose the adequate binder and to formulate the right coating solution. In this study we chose materials widely used in food and pharmaceutical industries, including; coating agents such as Hydroxypropyl-methylcellulose (HPMC) and Ethyl cellulose (EC), binders such as Polyvinylpyrrolidone (PVP) and Microcrystalline cellulose (MCC), hydrophobic filler such as Stearic acid (SA) and plasticizer such as Polyethylene glycol (PEG). A successful granulation requires good affinity between host and guest particles. In this context, in the first part of this work, two approaches to predict the binder-substrate affinity in dry and in aqueous media were compared; one based on the work of adhesion and the other based on the ideal tensile strength. The concept of ideal tensile strength was extended to ternary systems and applied for granulation in aqueous media. The developed approaches were thereafter tested for various systems (composed of PVP, MCC, HPMC, SA, EC, PEG and water) and compared to experimental observations. Approaches yielded results in good agreement with the experimental observations, but the work of adhesion approach might give more accurate affinity predictions on the particles affinity than the ideal tensile strength approach. Both approaches predicted that HPMC is a good binder for MCC. Results also indicated that PEG has a good affinity with HPMC and SA. In a second part of our work, we used mesoscale simulations and experimental techniques to investigate the structure of agglomerates formed in aqueous colloidal formulations used in coating and granulation processes. For the simulations, dissipative particle dynamics (DPD) and a coarse-grained approach were used. In the DPD method, the compounds were described as a set of soft beads interacting according to the Flory-Huggins model. The repulsive interactions between the beads were evaluated using the solubility parameter (δ) as input, where, δ was calculated by all-atom molecular simulations. The mesoscale simulation results were compared to experimental results obtained by Cryogenic-SEM, particle size distribution analysis and DSC technique. According to the DPD simulations, HPMC polymer is a better stabilizing agent for SA than PVP and MCC. In addition, HPMC is able to cover the SA particle with a thick layer ant to adsorb in depth into its inner core, preventing SA agglomeration and crystal growth. But, for high amounts of SA (above 10% (w/w)), HPMC is unable to fully stabilize SA. We also found that PEG polymer diffuses inside HPMC chains thereby extending and softening the composite polymer. Experimental results presented similar trends; particle size distribution analysis showed that in the presence of HPMC, for low percentages of SA (below 10% (w/w)), the majority of SA particles are below 1 μm in diameter. SEM images revealed that HPMC surrounds SA crystals with a hatching textured film and anchors on their surface

    Planification et dimensionnement des réseaux optiques de longues distances

    Get PDF
    Le projet de recherche porte sur l'étude des problèmes de conception et de planification d'un réseau optique de longue distance, aussi appelé réseau de coeur (OWAN-Optical Wide Area Network en anglais). Il s'agit d'un réseau qui transporte des flots agrégés en mode commutation de circuits. Un réseau OWAN relie différents sites à l'aide de fibres optiques connectées par des commutateurs/routeurs optiques et/ou électriques. Un réseau OWAN est maillé à l'échelle d'un pays ou d’un continent et permet le transit des données à très haut débit. Dans une première partie du projet de thèse, nous nous intéressons au problème de conception de réseaux optiques agiles. Le problème d'agilité est motivé par la croissance de la demande en bande passante et par la nature dynamique du trafic. Les équipements déployés par les opérateurs de réseaux doivent disposer d'outils de configuration plus performants et plus flexibles pour gérer au mieux la complexité des connexions entre les clients et tenir compte de la nature évolutive du trafic. Souvent, le problème de conception d'un réseau consiste à prévoir la bande passante nécessaire pour écouler un trafic donné. Ici, nous cherchons en plus à choisir la meilleure configuration nodale ayant un niveau d'agilité capable de garantir une affectation optimale des ressources du réseau. Nous étudierons également deux autres types de problèmes auxquels un opérateur de réseau est confronté. Le premier problème est l'affectation de ressources du réseau. Une fois que l'architecture du réseau en termes d'équipements est choisie, la question qui reste est de savoir : comment dimensionner et optimiser cette architecture pour qu'elle rencontre le meilleur niveau possible d'agilité pour satisfaire toute la demande. La définition de la topologie de routage est un problème d'optimisation complexe. Elle consiste à définir un ensemble de chemins optiques logiques, choisir les routes physiques suivies par ces derniers, ainsi que les longueurs d'onde qu'ils utilisent, de manière à optimiser la qualité de la solution obtenue par rapport à un ensemble de métriques pour mesurer la performance du réseau. De plus, nous devons définir la meilleure stratégie de dimensionnement du réseau de façon à ce qu'elle soit adaptée à la nature dynamique du trafic. Le second problème est celui d'optimiser les coûts d'investissement en capital(CAPEX) et d'opération (OPEX) de l'architecture de transport proposée. Dans le cas du type d'architecture de dimensionnement considérée dans cette thèse, le CAPEX inclut les coûts de routage, d'installation et de mise en service de tous les équipements de type réseau installés aux extrémités des connexions et dans les noeuds intermédiaires. Les coûts d'opération OPEX correspondent à tous les frais liés à l'exploitation du réseau de transport. Étant donné la nature symétrique et le nombre exponentiel de variables dans la plupart des formulations mathématiques développées pour ces types de problèmes, nous avons particulièrement exploré des approches de résolution de type génération de colonnes et algorithme glouton qui s'adaptent bien à la résolution des grands problèmes d'optimisation. Une étude comparative de plusieurs stratégies d'allocation de ressources et d'algorithmes de résolution, sur différents jeux de données et de réseaux de transport de type OWAN démontre que le meilleur coût réseau est obtenu dans deux cas : une stratégie de dimensionnement anticipative combinée avec une méthode de résolution de type génération de colonnes dans les cas où nous autorisons/interdisons le dérangement des connexions déjà établies. Aussi, une bonne répartition de l'utilisation des ressources du réseau est observée avec les scénarios utilisant une stratégie de dimensionnement myope combinée à une approche d'allocation de ressources avec une résolution utilisant les techniques de génération de colonnes. Les résultats obtenus à l'issue de ces travaux ont également démontré que des gains considérables sont possibles pour les coûts d'investissement en capital et d'opération. En effet, une répartition intelligente et hétérogène de ressources d’un réseau sur l'ensemble des noeuds permet de réaliser une réduction substantielle des coûts du réseau par rapport à une solution d'allocation de ressources classique qui adopte une architecture homogène utilisant la même configuration nodale dans tous les noeuds. En effet, nous avons démontré qu'il est possible de réduire le nombre de commutateurs photoniques tout en satisfaisant la demande de trafic et en gardant le coût global d'allocation de ressources de réseau inchangé par rapport à l'architecture classique. Cela implique une réduction substantielle des coûts CAPEX et OPEX. Dans nos expériences de calcul, les résultats démontrent que la réduction de coûts peut atteindre jusqu'à 65% dans certaines jeux de données et de réseau.The research project focuses on the design and planning problems of long distance optical networks also called OWANs (Optical Wide Area Networks) or "backbone". These are networks that carry aggregate flows in circuit switching mode. OWAN networks connect sites with optical fibers, cross-connected by optical and/or electric switches/routers. OWAN networks are meshed throughout a country or continent and allow the transit of data at very high speed. In the first part of the thesis, we are interested in the design problem of agile optical networks. The problem of agility is motivated by the growing of bandwidth demand and by the dynamic pattern of client traffic. Equipment deployed by network operators must allow greater reconfigurability and scalability to manage the complexity of connections among clients and deal with a dynamic traffic pattern. Often, the problem of network design is to provide the required bandwidth to grant a given traffic pattern. Here, we seek to choose the best nodal configuration with the agility level that can guarantee the optimal network resource provisioning. We will also study two other types of problems that can face a network operator. The first problem is the network resource provisioning. Once the network architecture design is chosen, the remaining question is : How to resize and optimize the architecture to meet the agility level required to grant any demand. The definition of the network provisioning scheme is a complex optimization problem. It consists of defining a set of optical paths, choosing the routes followed by them, and their assigned wavelengths, so as to optimize the solution quality with respect to some network metrics. Moreover, we need to define the best design strategy adapted to the dynamic traffic pattern. The second problem is to optimize the capital investment cost (CAPEX) and the operational expenses (OPEX) of the selected optical transport architecture. In the case of the design architecture considered in this thesis, the CAPEX includes the routing cost, the installation cost and the commissioning service cost for all required network equipment in end connections and intermediate nodes. OPEX correspond to expenses related to the operation of the transport network. Given the symmetrical nature and the exponential number of variables in most mathematical formulations developed for these types of problems, we particularly explored solving approaches based on a column generation algorithm and greedy heuristics which adapt well to these types of modeling and large scale mathematical models. A comparative study of several provisioning strategies and solution algorithms on different traffic and OWAN network instances show that the minimum network cost is obtained in two cases : An anticipative dimensioning strategy combined with a column generation solution combined with a rounding off heuristic in the context of no disturbance or possible disturbance of previously granted connections. Also, a good repartition of used network resources (MSPPs, PXC and wavelengths) is observed with the scenarios using a myopic strategy and a column generation solution approach. The results obtained from this thesis also show that a considerable saving in CAPEX and OPEX costs are possible in the case of an intelligent allocation and heteregenous distribution of network resources through network nodes compared with the classical architecture that adopts a uniform architecture using the same configuration in all nodes. Indeed, we demonstrated that it is possible to reduce the number of PXCs (Photonic Switches) while satisfying the traffic matrix and keeping the overall cost of provisioning network unchanged compared to what is happening in a classic architecture. This implies a substantial reduction in network CAPEX and OPEX costs. In our experiments with various network and traffic instances, we show that a careful dimensioning and location of the nodal equipment can save up to 65% of network expenses

    Groupage de trafic à coût minimum dans les réseaux anneaux WDM

    Full text link
    Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal
    • …
    corecore