19 research outputs found

    Borehole breakout analysis: results from the AND-2A Well

    Get PDF
    To define the present-day stress field in the upper crust and to understand the recent tectonic activity in Antarctica, a study of breakout measurements along AND-2A well was performed. The borehole breakout is an important indicator of horizontal stress orientation and occurs when the stresses around the borehole exceed that required to cause compressive failure of the borehole wall (Bell and Gough, 1979; Zoback et al., 1985, Bell, 1990). The enlargement of the wellbore is caused by the development of intersecting conjugate shear planes that cause pieces of the borehole wall to spall off. Around a vertical borehole, stress concentration is greatest in the direction of the minimum horizontal stress (Shmin), hence, the long axes of borehole breakouts are oriented approximately perpendicular to the maximum horizontal stress orientation (SHmax). The orientation of breakouts along the AND-2A well was measured using acoustic (BHTV) and mechanical (Four-Arm Caliper) tools. Borehole televiewer (BHTV) provides an acoustic "image" of the borehole wall (360 degree coverage) and gives detailed information for investigation of fractures and stress analysis. The four-arm caliper is the oldest technique for borehole breakout identification and it is included in routine dipmeter logs. A quality value has been assigned to the well results in agreement with the World Stress Map quality ranking scheme (Zoback, 1992; Heidback et al., 2010) based mainly on the number, accuracy, and length of breakout measurements. The result is presented as rose diagram of the breakout directions where the length of each peak is proportional to the frequency and the width to the variance of its gaussian curve. We have analyzed the following curves to recognize the breakout: the azimuth of Pad 1 (P1az), the drift azimuth (HAZI), the two calipers with respect to the bit size (BZ) curve and the curve relative to the deviation of the well. The AND-2A Four-Arm Caliper data cover a depth interval between 637 down to 997 mbsl, that corresponds to 360 m of logged interval. We have distinguished breakouts and some washouts only in the interval from 753 to 825 mbsl. From borehole televiewer images, we have data from 398 mbsl down to 1136 mbsl. The BHTV worked well showing a lot of interesting features such as many bedding, lamination and fractures (natural and induced) but poor breakouts. The rare breakouts have also a small size (called protobreakouts) but they are consistent with induced features. Considering the breakout result from caliper and BHTV, the AND-2A borehole is unfortunately classified as D quality. This means that to obtain a reliable active stress field of the area it is necessary to compare this result with other available data

    Borehole breakout analysis: results from the AND-2A Well

    No full text
    To define the present-day stress field in the upper crust and to understand the recent tectonic activity in Antarctica, a study of breakout measurements along AND-2A well was performed. The borehole breakout is an important indicator of horizontal stress orientation and occurs when the stresses around the borehole exceed that required to cause compressive failure of the borehole wall (Bell and Gough, 1979; Zoback et al., 1985, Bell, 1990). The enlargement of the wellbore is caused by the development of intersecting conjugate shear planes that cause pieces of the borehole wall to spall off. Around a vertical borehole, stress concentration is greatest in the direction of the minimum horizontal stress (Shmin), hence, the long axes of borehole breakouts are oriented approximately perpendicular to the maximum horizontal stress orientation (SHmax). The orientation of breakouts along the AND-2A well was measured using acoustic (BHTV) and mechanical (Four-Arm Caliper) tools. Borehole televiewer (BHTV) provides an acoustic "image" of the borehole wall (360 degree coverage) and gives detailed information for investigation of fractures and stress analysis. The four-arm caliper is the oldest technique for borehole breakout identification and it is included in routine dipmeter logs. A quality value has been assigned to the well results in agreement with the World Stress Map quality ranking scheme (Zoback, 1992; Heidback et al., 2010) based mainly on the number, accuracy, and length of breakout measurements. The result is presented as rose diagram of the breakout directions where the length of each peak is proportional to the frequency and the width to the variance of its gaussian curve. We have analyzed the following curves to recognize the breakout: the azimuth of Pad 1 (P1az), the drift azimuth (HAZI), the two calipers with respect to the bit size (BZ) curve and the curve relative to the deviation of the well. The AND-2A Four-Arm Caliper data cover a depth interval between 637 down to 997 mbsl, that corresponds to 360 m of logged interval. We have distinguished breakouts and some washouts only in the interval from 753 to 825 mbsl. From borehole televiewer images, we have data from 398 mbsl down to 1136 mbsl. The BHTV worked well showing a lot of interesting features such as many bedding, lamination and fractures (natural and induced) but poor breakouts. The rare breakouts have also a small size (called protobreakouts) but they are consistent with induced features. Considering the breakout result from caliper and BHTV, the AND-2A borehole is unfortunately classified as D quality. This means that to obtain a reliable active stress field of the area it is necessary to compare this result with other available data.UnpublishedSan Francisco (California, USA)3.2. Tettonica attivaope

    Paleogene and Neogene Paleoclimate Implications of High-Resolution Mineralogy and Mass Accumulation Rates for Equatorial Pacific Sites Drilled During ODP Leg 199 (abstract of poster presented at AGU Fall Meeting, San Francisco, 6-10 Dec 2002)

    No full text
    ODP Leg 199 was the first leg in which reflectance spectra were routinely measured from sediment cores at an extended bandwidth (350-2500 nm) using light absorption spectroscopy (LAS). Precruise calibration of spectral features to local ground-truth samples enabled shipboard calculation of concentrations of calcite and opal, the two biogenic sediment components, and smectite and illite, the two main terrigenous sediment components. These mineral calculation transforms were refined postcruise with additional ground-truth samples. Using multiple regression and LAS mineralogy, the multi-sensor track physical properties data were converted into high-resolution mineralogy logs. These logs, as well as age and dry-bulk density, were used to calculate high-resolution carbonate, opal, and terrigenous mass accumulation rates (MAR) for each Leg 199 site. Plots of opal MAR versus paleolatitude show that during the Paleogene, the opal equatorial accumulation bulge extended to about 12 degrees N, whereas in the Neogene the bulge extended only to about 7 degrees N. Carbonate accumulation rates during the middle to late Eocene were very low except for a few isolated intervals (e.g., around 41 Ma). Carbonate accumulation rates in the Oligocene and early Miocene were much higher than in the Eocene, with the carbonate equatorial bulge extending to 4 degrees N. Terrigenous MAR are much more variable between adjacent sites, probably because of ocean bottom currents. A Pliocene increase in terrigenous accumulations in the north (20-25 degrees N) may correspond to an increase in the Asian dust flux that occurred ~2.6 Ma

    Magnetostratigraphic and Biostratigraphic Synthesis of Ocean Drilling Program Leg 105: Labrador Sea and Baffin Bay

    No full text
    During Ocean Drilling Program (ODP) Leg 105, three sites (Sites 645 through 647) were drilled in Baffin Bay and the Labrador Sea to examine the tectonic evolution and the climatic and oceanic histories of this region. Biostratigraphic and magnetostratigraphic results vary at each site, while stratigraphic resolution depends on the limited abundance of marker species and the completeness of the paleomagnetic record. Because of the paucity of planktonic micro- fossils and the poor paleomagnetic record signatures, stratigraphic determinations at Site 645 often rely on defining minimum temporal constraints on specific samples or stratigraphic intervals. The completed stratigraphy indicates that the sedimentary sequence recovered at Site 645 is early Miocene to Holocene in age. The magnetostratigraphy and biostratigraphies are better defined at Sites 646 and 647 in the Labrador Sea. Site 646 generally contains a well-developed magnetostratigraphy and calcareous microfossil biostratigraphy. This biostratigraphy is based on calcareous nannofossils and planktonic foraminifers typical of the North Atlantic Ocean. Siliceous microfossils are also present at Site 646, but they are restricted to upper Pliocene through Holocene sediments. The strati-graphic sequence recovered at Site 646 is late Miocene to Holocene in age. Based primarily on the calcareous nannofossil stratigraphy, the sequence recovered at Site 647 consists of lower Eocene to lower Oligocene, lower Miocene, upper Miocene, and upper Pliocene through Holocene sediments. Three hiatuses are present in this sequence: the older hiatus separates lower Oligocene sediments from lower Miocene sediments, another hiatus separates lower Miocene sediments from upper Miocene sediments, and the youngest one separates up¬per Miocene from upper Pliocene sediments. A magnetostratigraphy is defined for the interval from the Gauss/Matuyama boundary through the Brunhes (Clement et al., this volume). Both planktonic foraminifers and siliceous micro- fossils have restricted occurrences. Planktonic foraminifers occur in Pliocene and younger sediments, and siliceous microfossils are present in lower Miocene and lower Oligocene sediments. The near-continuous Eocene through lower Oligocene sequence recovered at Site 647 allows the calcareous nannofossils and diatom stratigraphies at this site to act as a Paleogene stratigraphic framework. This framework can be com¬pared with the stratigraphy previously completed for DSDP Site 112

    Ridge-trench collision-induced switching of arc tectonics and magma sources: clues from Antarctic Peninsula mafic dykes

    No full text
    Compositions and distributions of mafic dykes in the Antarctic Peninsula continental arc show that tapping of several mantle sources was tectonically controlled. In the Cretaceous to Tertiary, between 135 Ma and 55 Ma, calc-alkaline dykes intruded the arc. In the late Cretaceous, however, between 95 Ma and 65 Ma, there was a pulse of compositionally diverse magmatism. This change resulted from collision of an ocean spreading centre with the trench. As a consequence, non-partitioned dextral transtensional shear in the overriding plate became partitioned into strike-slip and extensional domains. Calc-alkaline magmatism was, therefore, replaced by strike-slip-related shoshonitic magmatism towards the rear-arc and extensionrelated tholeiitic magmatism towards the fore-arc. OIB-like dykes were emplaced because of the break in otherwise continuous subduction. During the early Tertiary subduction continued but ceased after a late Tertiary ridge-trench collision
    corecore