258 research outputs found

    Chiral non-linear sigma-models as models for topological superconductivity

    Full text link
    We study the mechanism of topological superconductivity in a hierarchical chain of chiral non-linear sigma-models (models of current algebra) in one, two, and three spatial dimensions. The models have roots in the 1D Peierls-Frohlich model and illustrate how the 1D Frohlich's ideal conductivity extends to a genuine superconductivity in dimensions higher than one. The mechanism is based on the fact that a point-like topological soliton carries an electric charge. We discuss a flux quantization mechanism and show that it is essentially a generalization of the persistent current phenomenon, known in quantum wires. We also discuss why the superconducting state is stable in the presence of a weak disorder.Comment: 5 pages, revtex, no figure

    Fermionic Determinant of the Massive Schwinger Model

    Full text link
    A representation for the fermionic determinant of the massive Schwinger model, or QED2QED_2, is obtained that makes a clean separation between the Schwinger model and its massive counterpart. From this it is shown that the index theorem for QED2QED_2 follows from gauge invariance, that the Schwinger model's contribution to the determinant is canceled in the weak field limit, and that the determinant vanishes when the field strength is sufficiently strong to form a zero-energy bound state

    The non-forward BFKL amplitude and rapidity gap physics

    Get PDF
    We discuss the BFKL approach to processes with large momentum transferred through a rapidity gap. The Mueller and Tang scheme to the BFKL non-forward parton-parton elastic scattering amplitude at large tt, is extended to include higher conformal spins. The new contributions are found to decrease with increasing energy, as follows from the gluon reggeisation phenomenon, and to vanish for asymptotically high energies. However, at moderate energies and high t|t|, the higher conformal spins dominate the amplitude. We illustrate the effects by studying the production of two high ETE_T jets separated by a rapidity gap at HERA energies. In a simplified framework, we find excellent agreement with the HERA photoproduction data once we incorporate the rapidity gap survival probability against soft rescattering effects. We emphasize that measurements of the analogous process in electroproduction may probe different summations over conformal spins.Comment: Latex, 14 pages, 3 figures; the final version to appear in Phys. Lett. B; a short discussion of the Tevatron data added; a previously missing factor of i^n introduced in eq. (13

    Parton Saturation-An Overview

    Get PDF
    The idea of partons and the utility of using light-cone gauge in QCD are introduced. Saturation of quark and gluon distributions are discussed using simple models and in a more general context. The Golec-Biernat W\usthoff model and some simple phenomenology are described. A simple, but realistic, equation for unitary, the Kovchegov equation, is discussed, and an elementary derivation of the JIMWLK equation is given.Comment: Cargese Lectures, 34 pages, 19 figure

    Theoretical issues of small xx physics

    Full text link
    The perturbative QCD predictions concerning deep inelastic scattering at low xx are summarized. The theoretical framework based on the leading log 1/x1/x resummation and ktk_t factorization theorem is described and some recent developments concerning the BFKL equation and its generalization are discussed. The QCD expectations concerning the small xx behaviour of the spin dependent structure function g1(x,Q2)g_1(x,Q^2) are briefly summarized and the importance of the double logarithmic terms which sum contributions containing the leading powers of αsln2(1/x)\alpha_s ln^2(1/x) is emphasised. The role of studying final states in deep inelastic scattering for revealing the details of the underlying dynamics at low xx is pointed out and some dedicated measurements, like deep inelastic scattering accompanied by an energetic jet, the measurement of the transverse energy flow etc., are briefly discussed.Comment: 17 pages, LATEX, 7 uuencoded eps figures include

    The Regge Limit for Green Functions in Conformal Field Theory

    Full text link
    We define a Regge limit for off-shell Green functions in quantum field theory, and study it in the particular case of conformal field theories (CFT). Our limit differs from that defined in arXiv:0801.3002, the latter being only a particular corner of the Regge regime. By studying the limit for free CFTs, we are able to reproduce the Low-Nussinov, BFKL approach to the pomeron at weak coupling. The dominance of Feynman graphs where only two high momentum lines are exchanged in the t-channel, follows simply from the free field analysis. We can then define the BFKL kernel in terms of the two point function of a simple light-like bilocal operator. We also include a brief discussion of the gravity dual predictions for the Regge limit at strong coupling.Comment: 23 pages 2 figures, v2: Clarification of relation of the Regge limit defined here and previous work in CFT. Clarification of causal orderings in the limit. References adde
    corecore