4 research outputs found

    Expression of miR-223 to predict outcomes after transcatheter aortic valve implantation

    Get PDF
    Background: Transcatheter aortic valve implantation (TAVI) is an established treatment for aortic stenosis (AS) in patients at increased surgical risk. Up to 29% of patients annually experience major adverse cardiac and cerebrovascular events (MACCE) after TAVI. MicroRNAs (miRNA) are currently widely investigated as novel cardiovascular biomarkers. The aim of this study was to determine the influence of TAVI on the expressions of selected miRNAs associated with platelet function (miR-125a-5p, miR-125b and miR-223), and evaluate the predictive value of these miRNAs for MACCE in 65 patients undergoing TAVI. Methods: Venous blood samples for miRNA expression analysis were collected 1 day before TAVI and at hospital discharge. The expression of miR-223, miR-125a-5p, miR-125b was evaluated in platelet-depleted plasma. Results: The expression of miR-223 and miR-125b increased after TAVI, compared to the measurement before (p = 0.020, p = 0.003, respectively). Among 63 patients discharged from the hospital, 18 patients experienced MACCE (29%) during the median 15 months of observation. Baseline low miR-223 expression was a predictor of MACCE in univariate Cox regression analysis (hazard ratio [HR]: 2.71, 95% confidence interval [CI]: 1.04–7.01; p = 0.041). After inclusion of covariates, age, gender (male), New York Heart Association class and diabetes into the multivariate Cox regression model, miR-223 did not reach statistical significance (HR: 2.56, 95% CI: 0.79–8.33; p = 0.118). Conclusions: To conclude, miR-223 might improve risk stratification after TAVI. Further studies are required to confirm the clinical applicability of this promising biomarker

    The role of non-coding RNAs in neuroinflammatory process in multiple sclerosis

    No full text
    Multiple sclerosis (MS) is a central nervous system chronic neuroinflammatory disease followed by neurodegeneration. The diagnosis is based on clinical presentation, cerebrospinal fluid testing and magnetic resonance imagining. There is still a lack of a diagnostic blood-based biomarker for MS. Due to the cost and difficulty of diagnosis, new and more easily accessible methods are being sought. New biomarkers should also allow for early diagnosis. Additionally, the treatment of MS should lead to the personalization of the therapy. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) as well as their target genes participate in pathophysiology processes in MS. Although the detailed mechanism of action of non-coding RNAs (ncRNAs, including miRNAs and lncRNAs) on neuroinflammation in MS has not been fully explained, several studies were conducted aiming to analyse their impact in MS. In this article, we review up-to-date knowledge on the latest research concerning the ncRNAs in MS and evaluate their role in neuroinflammation. We also point out the most promising ncRNAs which may be promising in MS as diagnostic and prognostic biomarkers

    The Importance of Non-Coding RNAs in Neurodegenerative Processes of Diabetes-Related Molecular Pathways

    No full text
    Diabetes mellitus (DM) is a complex condition and serious health problem, with growing occurrence of DM-associated complications occurring globally. Persistent hyperglycemia is confirmed as promoting neurovascular dysfunction leading to irreversible endothelial cell dysfunction, increased neuronal cell apoptosis, oxidative stress and inflammation. These collaboratively and individually result in micro- and macroangiopathy as well as neuropathy demonstrated by progressive neuronal loss. Recently, major efforts have been pursued to select not only useful diagnostic and prognostic biomarkers, but also novel therapeutic approaches. Both microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) belong to a class of non-coding RNAs identified in most of the body fluids i.e., peripheral blood, cerebrospinal fluid, brain tissue and neurons. Numerous miRNAs, lncRNAs and their target genes are able to modulate signaling pathways known to play a role in the pathophysiology of progressive neuronal dysfunction. Therefore, they pose as promising biomarkers and treatment for the vast majority of neurodegenerative disorders. This review provides an overall assessment of both miRNAs’ and lncRNAs’ utility in decelerating progressive nervous system impairment, including neurodegeneration in diabetic pathways
    corecore