2 research outputs found

    Cytokine expression by CD163+ monocytes in healthy and Actinobacillus pleuropneumoniae-infected pigs

    Get PDF
    Distinct monocyte subpopulations have been previously described in healthy pigs and pigs experimentally infected with Actinobacillus pleuropneumoniae (APP). The CD163+ subpopulation of bone marrow (BM), peripheral blood (PB) and lung monocytes was found to play an important role in the inflammatory process. The inflammation is accompanied by elevation of inflammatory cytokines. The aim of the study was to evaluate the contribution of CD163+ monocytes and macrophages to cytokine production during APP-induced lung inflammation. Cytokine production was assessed by flow cytometry (FC) and quantitative PCR (qPCR) in CD163+ monocytes and by qPCR, immunohistochemistry/fluorescence in lungs and tracheobronchial lymph nodes (TBLN). Despite the systemic inflammatory response after APP infection, BM and PB CD163+ monocytes did not express elevated levels of a wide range of cytokines compared to control pigs. In contrast, significant amounts of IL-1β, IL-6, IL-8 and TNF-α were produced in lung lesions and IL-1β in the TBLN. At the protein level, TNF-α was expressed by both CD163+ monocytes and macrophages in lung lesions, whereas IL-1β, IL-6 and IL-8 expression was found only in CD163+ monocytes; no CD163+ macrophages were found to produce these cytokines. Furthermore, the quantification of CD163+ monocytes expressing the two cytokines IL-1β and IL-8 that were most elevated was performed. In lung lesions, 36.5% IL-1β positive CD163+ monocytes but only 18.3% IL-8 positive CD163+ monocytes were found. In conclusion, PB and BM CD163+ monocytes do not appear to contribute to the elevated cytokine levels in plasma. On the other hand, CD163+ monocytes contribute to inflammatory cytokine expression, especially IL-1β at the site of inflammation during the inflammatory process.Peer reviewe

    Vaccine against Streptococcus suis Infection in Pig Based on Alternative Carrier Protein Conjugate

    No full text
    Streptococcus suis is a serious pathogen in the pig industry with zoonotic potential. With respect to the current effort to reduce antibiotic use in animals, a prophylactic measure is needed to control the disease burden. Unfortunately, immunization against streptococcal pathogens is challenging due to nature of the interaction between the pathogen and the host immune system, but vaccines based on conjugates of capsular polysaccharide (CPS) and carrier protein were proved to be efficient. The main obstacle of these vaccines is manufacturing cost, limiting their use in animals. In this work, we tested an experimental vaccine against Streptococcus suis serotype 2 based on capsular polysaccharide conjugated to chicken ovalbumin (OVA) and compared its immunogenicity and protectivity with a vaccine based on CRM197 conjugate. Ovalbumin was selected as a cheap alternative to recombinant carrier proteins widely used in vaccines for human use. We found that the ovalbumin-based experimental vaccine successfully induced immune response in pigs, and the IgG antibody response was even higher than after immunization with capsular polysaccharide-CRM197 conjugate. Protectivity of vaccination against infection was evaluated in the challenge experiment and was found promising for both conjugates
    corecore