12 research outputs found

    Genetic Targeting in Cerebellar Purkinje Cells: an Update

    Get PDF
    Since the last review paper published in Cerebellum in 2002 [1], there has been a substantial increase in the number of experiments utilizing transgenic manipulations in murine cerebellar Purkinje cells. Most of these approaches were made possible with the use of the Cre/loxP methodology and pcp2/L7 based Cre recombinase expressing transgenic mouse strains. This review aims to summarize all studies which used Purkinje cell specific transgenesis since the first use of mouse strain with Purkinje cell specific Cre expression in 2002

    Impairment of LTD and cerebellar learning by Purkinje cell–specific ablation of cGMP-dependent protein kinase I

    Get PDF
    The molecular basis for cerebellar plasticity and motor learning remains controversial. Cerebellar Purkinje cells (PCs) contain a high concentration of cGMP-dependent protein kinase type I (cGKI). To investigate the function of cGKI in long-term depression (LTD) and cerebellar learning, we have generated conditional knockout mice lacking cGKI selectively in PCs. These cGKI mutants had a normal cerebellar morphology and intact synaptic calcium signaling, but strongly reduced LTD. Interestingly, no defects in general behavior and motor performance could be detected in the LTD-deficient mice, but the mutants exhibited an impaired adaptation of the vestibulo-ocular reflex (VOR). These results indicate that cGKI in PCs is dispensable for general motor coordination, but that it is required for cerebellar LTD and specific forms of motor learning, namely the adaptation of the VOR

    Requirement of TrkB for synapse elimination in developing cerebellar Purkinje cells

    No full text
    The receptor tyrosine kinase TrkB and its ligands, brain-derived neurotrophic factor (BDNF) and neurotrophin-4/5 (NT-4/5), are critically important for growth, survival and activity-dependent synaptic strengthening in the central nervous system. These TrkB-mediated actions occur in a highly cell-type specific manner. Here we report that cerebellar Purkinje cells, which are richly endowed with TrkB receptors, develop a normal morphology in trkB-deficient mice. Thus, in contrast to other types of neurons, Purkinje cells do not need TrkB for dendritic growth and spine formation. Instead, we find a moderate delay in the maturation of GABAergic synapses and, more importantly, an abnormal multiple climbing fiber innervation in Purkinje cells in trkB-deficient mice. Thus, our results demonstrate an involvement of TrkB receptors in synapse elimination and reveal a new role for receptor tyrosine kinases in the brain

    Calbindin in cerebellar Purkinje cells is a critical determinant of the precision of motor coordination

    Get PDF
    Long-term depression (LTD) of Purkinje cell–parallel fiber synaptic transmission is a critical determinant of normal cerebellar function. Impairment of LTD through, for example, disruption of the metabotropic glutamate receptor–IP 3 – calcium signaling cascade in mutant mice results in severe deficits of both synaptic transmission and cerebellar motor control. Here, we demonstrate that selective genetic deletion of the calcium-binding protein calbindin D-28k (calbindin) from cerebellar Purkinje cells results in distinctly different cellular and behavioral alterations. These mutants display marked permanent deficits of motor coordination and sensory processing. This occurs in the absence of alterations in a form of LTD implicated in the control of behavior. Analysis of synaptically evoked calcium transients in spines and dendrites of Purkinje cells demonstrated an alteration of time course and amplitude of fast calcium transients after parallel or climbing fiber stimulation. By contrast, the delayed metabotropic glutamate receptor-mediated calcium transients were normal. Our results reveal a unique role of Purkinje cell calbindin in a specific form of motor control and suggest that rapid calcium buffering may directly control behaviorally relevant neuronal signal integration. Key words: calbindin D-28k; conditional null mutant; Purkinje cell; motor coordination; long-term depression; synaptically evoke
    corecore