13 research outputs found

    Telomere Attrition Occurs during Ex Vivo Expansion of Human Dental Pulp Stem Cells

    Get PDF
    We provide a detailed characteristic of stem cells isolated and expanded from the human dental pulp. Dental pulp stem cells express mesenchymal cell markers STRO-1, vimentin, CD29, CD44, CD73, CD90, CD166, and stem cell markers Sox2, nestin, and nucleostemin. They are multipotent as shown by their osteogenic and chondrogenic potential. We measured relative telomere length in 11 dental pulp stem cell lines at different passages by quantitative real-time PCR. Despite their large proliferative capacity, stable viability, phenotype, and genotype over prolonged cultivation, human dental pulp stem cells suffer from progressive telomere shortening over time they replicate in vitro. Relative telomere length (T/S) was inversely correlated with cumulative doubling time. Our findings indicate that excessive ex vivo expansion of adult stem cells should be reduced at minimum to avoid detrimental effects on telomere maintenance and measurement of telomere length should become a standard when certificating the status and replicative age of stem cells prior therapeutic applications

    Development and Maintenance of Epidermal Stem Cells in Skin Adnexa

    No full text
    The skin surface is modified by numerous appendages. These structures arise from epithelial stem cells (SCs) through the induction of epidermal placodes as a result of local signalling interplay with mesenchymal cells based on the Wnt–(Dkk4)–Eda–Shh cascade. Slight modifications of the cascade, with the participation of antagonistic signalling, decide whether multipotent epidermal SCs develop in interfollicular epidermis, scales, hair/feather follicles, nails or skin glands. This review describes the roles of epidermal SCs in the development of skin adnexa and interfollicular epidermis, as well as their maintenance. Each skin structure arises from distinct pools of epidermal SCs that are harboured in specific but different niches that control SC behaviour. Such relationships explain differences in marker and gene expression patterns between particular SC subsets. The activity of well-compartmentalized epidermal SCs is orchestrated with that of other skin cells not only along the hair cycle but also in the course of skin regeneration following injury. This review highlights several membrane markers, cytoplasmic proteins and transcription factors associated with epidermal SCs

    The Dose- and Time-Dependent Cytotoxic Effect of Graphene Nanoplatelets: In Vitro and In Vivo Study

    No full text
    Graphene-based nanomaterials received attention from scientists due to their unique properties: they are highly conductive, mechanically resistant and elastic. These materials can be used in different sectors of society from electronic energy storage in industry to biomedical applications. This study evaluates the influence of graphene nanoplatelets in vitro and in vivo. The toxicological influence of graphene nanoplatelets (GPs) was analyzed by cytotoxic methods, the change of cell proliferation was assessed in real-time, and the effect of GPs on a living organism was evaluated in an animal model using histopathological examination. We analyzed two types of GP administration: intratracheal and peroral. We found dose- and time-dependent cytotoxic effects of GPs in vitro; the concentration above 50 μg/mL increased the cytotoxicity significantly. The real-time analysis confirmed these data; the cells exposed to a high concentration of GPs for a longer time period resulted in a decrease in cell index which indicated lower cell viability. Histopathological examination revealed thickened alveolar septa and accumulation of GPs in the endocardium after intratracheal exposure. Peroral administration did not reveal any morphological changes. This study showed the dose- and time-dependent cytotoxic potential of graphene nanoplatelets in in vitro and in vivo models

    Signaling Involved in Hair Follicle Morphogenesis and Development

    Get PDF
    Hair follicle morphogenesis depends on Wnt, Shh, Notch, BMP and other signaling pathways interplay between epithelial and mesenchymal cells. The Wnt pathway plays an essential role during hair follicle induction, Shh is involved in morphogenesis and late stage differentiation, Notch signaling determines stem cell fate while BMP is involved in cellular differentiation. The Wnt pathway is considered to be the master regulator during hair follicle morphogenesis. Wnt signaling proceeds through EDA/EDAR/NF-ΞΊB signaling. NF-ΞΊB regulates the Wnt pathway and acts as a signal mediator by upregulating the expression of Shh ligand. Signal crosstalk between epithelial and mesenchymal cells takes place mainly through primary cilia. Primary cilia formation is initiated with epithelial laminin-511 interaction with dermal Ξ²-1 integrin, which also upregulates expression of downstream effectors of Shh pathway in dermal lineage. PDGF signal transduction essential for crosstalk is mediated through epithelial PDGF-A and PDGFRΞ± expressed on the primary cilia. Dermal Shh and PDGF signaling up-regulates dermal noggin expression; noggin is a potent inhibitor of BMP signaling which helps in counteracting BMP mediated Ξ²-catenin inhibition. This interplay of signaling between the epithelial and dermal lineage helps in epithelial Shh signal amplification. The dermal Wnt pathway helps in upregulation of epithelial Notch expression. Dysregulation of these pathways leads to certain abnormalities and in some cases even tumor outgrowth

    Induced Pluripotent Stem Cells and Their Use in Cardiac and Neural Regenerative Medicine

    No full text
    Stem cells are unique pools of cells that are crucial for embryonic development and maintenance of adult tissue homeostasis. The landmark Nobel Prize winning research by Yamanaka and colleagues to induce pluripotency in somatic cells has reshaped the field of stem cell research. The complications related to the usage of pluripotent embryonic stem cells (ESCs) in human medicine, particularly ESC isolation and histoincompatibility were bypassed with induced pluripotent stem cell (iPSC) technology. The human iPSCs can be used for studying embryogenesis, disease modeling, drug testing and regenerative medicine. iPSCs can be diverted to different cell lineages using small molecules and growth factors. In this review we have focused on iPSC differentiation towards cardiac and neuronal lineages. Moreover, we deal with the use of iPSCs in regenerative medicine and modeling diseases like myocardial infarction, Timothy syndrome, dilated cardiomyopathy, Parkinson’s, Alzheimer’s and Huntington’s disease. Despite the promising potential of iPSCs, genome contamination and low efficacy of cell reprogramming remain significant challenges

    Directed reprogramming of comprehensively characterized dental pulp stem cells extracted from natal tooth

    No full text
    Abstract The aim of this study was to extensively characterise natal dental pulp stem cells (nDPSC) and assess their efficiency to generate human induced pluripotent stem cells (hiPSC). A number of distinguishing features prompted us to choose nDPSC over normal adult DPSC, in that they differed in cell surface marker expression and initial doubling time. In addition, nDPSC expressed 17 out of 52 pluripotency genes we analysed, and the level of expression was comparable to human embryonic stem cells (hESC). Ours is the first group to report comprehensive characterization of nDPSC followed by directed reprogramming to a pluripotent stem cell state. nDPSC yielded hiPSC colonies upon transduction with Sendai virus expressing the pluripotency transcription factors POU5F1, SOX2, c-MYC and KLF4. nDPSC had higher reprogramming efficiency compared to human fibroblasts. nDPSC derived hiPSCs closely resembled hESC in terms of their morphology, expression of pluripotency markers and gene expression profiles. Furthermore, nDPSC derived hiPSCs differentiated into the three germ layers when cultured as embryoid bodies (EB) and by directed differentiation. Based on our findings, nDPSC present a unique marker expression profile compared with adult DPSC and possess higher reprogramming efficiency as compared with dermal fibroblasts thus proving to be more amenable for reprogramming

    3D microperfusion of mesoscale human microphysiological liver models improves functionality and recapitulates hepatic zonation

    No full text
    Hepatic in vitro models that accurately replicate phenotypes and functionality of the human liver are needed for applications in toxicology, pharmacology and biomedicine. Notably, it has become clear that liver function can only be sustained in 3D culture systems at physiologically relevant cell densities. Additionally, drug metabolism and drug-induced cellular toxicity often follow distinct spatial micropatterns of the metabolic zones in the liver acinus, calling for models that capture this zonation. We demonstrate the manufacture of accurate liver microphysiological systems (MPS) via engineering of 3D stereolithography printed hydrogel chips with arrays of diffusion open synthetic vasculature channels at spacings approaching in vivo capillary distances. Chip designs are compatible with seeding of cell suspensions or preformed liver cell spheroids. Importantly, primary human hepatocytes (PHH) and hiPSC-derived hepatocyte-like cells remain viable, exhibit improved molecular phenotypes compared to isogenic monolayer and static spheroid cultures and form interconnected tissue structures over the course of multiple weeks in perfused culture. 3D optical oxygen mapping of embedded sensor beads shows that the liver MPS recapitulates oxygen gradients found in the acini, which translates into zone-specific acet-ami-no-phen toxicity patterns. Zonation, here naturally generated by high cell densities and associated oxygen and nutrient utilization along the flow path, is also documented by spatial proteomics showing increased concentration of periportal- versus perivenous-associated proteins at the inlet region and vice versa at the outlet region. The presented microperfused liver MPS provides a promising platform for the mesoscale culture of human liver cells at phenotypically relevant densities and oxygen exposures. Statement of significance: A full 3D tissue culture platform is presented, enabled by massively parallel arrays of high-resolution 3D printed microperfusion hydrogel channels that functionally mimics tissue vasculature. The platform supports long-term culture of liver models with dimensions of several millimeters at physiologically relevant cell densities, which is difficult to achieve with other methods. Human liver models are generated from seeded primary human hepatocytes (PHHs) cultured for two weeks, and from seeded spheroids of hiPSC-derived human liver-like cells cultured for two months. Both model types show improved functionality over state-of-the-art 3D spheroid suspensions cultured in parallel. The platform can generate physiologically relevant oxygen gradients driven by consumption rather than supply, which was validated by visualization of embedded oxygen-sensitive microbeads, which is exploited to demonstrate zonation-specific toxicity in PHH liver models.</p
    corecore