7 research outputs found

    Wireless Video Capsule Enteroscopy in Preclinical Studies: Methodical Design of Its Applicability in Experimental Pigs

    Get PDF
    The aim of this project was to develop a methodology to introduce wireless video capsule endoscopy in preclinical research. Five mature female pigs (Sus scrofa domestica) were selected for the study. Capsule endoscopes (the EndoCapsule system; Olympus) were introduced into the duodenum endoscopically in each of the animals. The life span of batteries (i.e., total time of endoscopy recording) was 487–540 min (median 492 min). The capsule endoscope reached the cecum during enteroscopy once (after 7 h 57 min), in the remaining cases, endoscopy recordings terminated in the distal or terminal ileum. All capsule enteroscopies found a normal pattern of the small intestine. The intestinal lumen is narrower, transverse folds are sparse or even absent, villi are wider but less prominent in pigs compared to humans. Capsule endoscopy in experimental pigs will be helpful for future trials on injury of different drugs and xenobiotics to the small bowel

    Preclinical electrogastrography in experimental pigs

    Get PDF
    Surface electrogastrography (EGG) is a non-invasive means of recording gastric myoelectric activity or slow waves from cutaneous leads placed over the stomach. This paper provides a comprehensive review of preclinical EGG. Our group recently set up and worked out the methods for EGG in experimental pigs. We gained our initial experience in the use of EGG in assessment of porcine gastric myoelectric activity after volume challenge and after intragastric administration of itopride and erythromycin. The mean dominant frequency in pigs is comparable with that found in humans. EGG in experimental pigs is feasible. Experimental EGG is an important basis for further preclinical projects in pharmacology and toxicology

    Caco-2 Cells, Biopharmaceutics Classification System (BCS) and Biowaiter

    No full text
    Almost all orally administered drugs are absorbed across the intestinal mucosa. The Caco-2 monolayers are used as an in vitro model to predict drug absorption in humans and to explore mechanism of drug absorption. The Caco-2 cells are derived from a human colon adenocarcinoma and spontaneously differentiate to form confluent monolayer of polarized cells structurally and functionally resembling the small intestinal epithelium. For studying drug permeability, Caco-2 cells are seeded onto the Transwell inserts with semipermeable membrane and grown to late confluence (21 days). After determination of cell viability, the integrity of monolayer is checked by phenol red permeability and by 14C-mannitol permeability. The transport from apical to basolateral (AP-BL) and basolateral to apical (BL-AP) is studied by adding the diluted drug on the apical or basolateral side and withdrawing the samples from the opposite compartment, respectively, for HPLC analysis or liquid scintillation spectrometry. Ca2+- free transport medium is used to determine paracellular component of the drug transport. On the basis of permeability and solubility, drugs can be categorized into four classes of Biopharmaceutics Classification System (BCS). For certain drugs, the BCS-based biowaiver approach can be used which enables to reduce in vivo bioequivalence studies
    corecore