77 research outputs found
Polynomial two-parameter eigenvalue problems and matrix pencil methods for stability of delay-differential equations
Several recent methods used to analyze asymptotic stability of
delay-differential equations (DDEs) involve determining the eigenvalues of a
matrix, a matrix pencil or a matrix polynomial constructed by Kronecker
products. Despite some similarities between the different types of these
so-called matrix pencil methods, the general ideas used as well as the proofs
differ considerably. Moreover, the available theory hardly reveals the
relations between the different methods.
In this work, a different derivation of various matrix pencil methods is
presented using a unifying framework of a new type of eigenvalue problem: the
polynomial two-parameter eigenvalue problem, of which the quadratic
two-parameter eigenvalue problem is a special case. This framework makes it
possible to establish relations between various seemingly different methods and
provides further insight in the theory of matrix pencil methods.
We also recognize a few new matrix pencil variants to determine DDE
stability.
Finally, the recognition of the new types of eigenvalue problem opens a door
to efficient computation of DDE stability
Computing a partial Schur factorization of nonlinear eigenvalue problems using the infinite Arnoldi method
The partial Schur factorization can be used to represent several eigenpairs
of a matrix in a numerically robust way. Different adaptions of the Arnoldi
method are often used to compute partial Schur factorizations. We propose here
a technique to compute a partial Schur factorization of a nonlinear eigenvalue
problem (NEP). The technique is inspired by the algorithm in [8], now called
the infinite Arnoldi method. The infinite Arnoldi method is a method designed
for NEPs, and can be interpreted as Arnoldi's method applied to a linear
infinite-dimensional operator, whose reciprocal eigenvalues are the solutions
to the NEP. As a first result we show that the invariant pairs of the operator
are equivalent to invariant pairs of the NEP. We characterize the structure of
the invariant pairs of the operator and show how one can carry out a
modification of the infinite Arnoldi method by respecting the structure. This
also allows us to naturally add the feature known as locking. We nest this
algorithm with an outer iteration, where the infinite Arnoldi method for a
particular type of structured functions is appropriately restarted. The
restarting exploits the structure and is inspired by the well-known implicitly
restarted Arnoldi method for standard eigenvalue problems. The final algorithm
is applied to examples from a benchmark collection, showing that both
processing time and memory consumption can be considerably reduced with the
restarting technique
- …