49 research outputs found

    Genomic diversity of Escherichia coli isolates from backyard chickens and guinea fowl in the Gambia

    Get PDF
    Chickens and guinea fowl are commonly reared in Gambian homes as affordable sources of protein. Using standard microbiological techniques, we obtained 68 caecal isolates of Escherichia coli from 10 chickens and 9 guinea fowl in rural Gambia. After Illumina whole-genome sequencing, 28 sequence types were detected in the isolates (4 of them novel), of which ST155 was the most common (22/68, 32 %). These strains span four of the eight main phylogroups of E. coli, with phylogroups B1 and A being most prevalent. Nearly a third of the isolates harboured at least one antimicrobial resistance gene, while most of the ST155 isolates (14/22, 64 %) encoded resistance to ≄3 classes of clinically relevant antibiotics, as well as putative virulence factors, suggesting pathogenic potential in humans. Furthermore, hierarchical clustering revealed that several Gambian poultry strains were closely related to isolates from humans. Although the ST155 lineage is common in poultry from Africa and South America, the Gambian ST155 isolates belong to a unique cgMLST cluster comprising closely related (38-39 alleles differences) isolates from poultry and livestock from sub-Saharan Africa - suggesting that strains can be exchanged between poultry and livestock in this setting. Continued surveillance of E. coli and other potential pathogens in rural backyard poultry from sub-Saharan Africa is warranted

    A report on preparation, expansion and future outlook of COVID-19 testing in Gambia

    Get PDF
    Background: The outbreak of COVID-19 disease and rapid spread of the virus outside China led to its declaration as a Public Health Emer-gency of International Concern (PHEIC) in January 2020. Key elements of the early intervention strategy focused on laboratory diagnosis and screening at points of entry and imposition of restrictions in cross-border activities. Objective: We report the role the Medical Research Council Unit, The Gambia (MRCG) played in the early implementation of molecular testing for COVID-19 in The Gambia as part of the national outbreak response. Methods: Laboratory staff members, with experience in molecular biology assays, were identified and trained on COVID-19 testing at the Africa CDC training workshop in Dakar, Senegal. Thereafter risks assessments, drafting of standard operating procedures (SOPs) and in-house training enabled commencement of testing using commercial RT-PCR kits. Subsequently, testing was expanded to the National Public Health Laboratroy and also implemented across field sites for rapid response across the country. Results: Capacity for COVID-19 testing at MRCG was developed and can process aproximately 350 tests per day, which can be further scaled up as the demand for testing increases. Conclusion: The long presence of the Unit in The Gambia and strong collaborative relationship with the National Health Ministry, allowed for a synergistc approach in mounting an effective response that con-tributed in delaying the establishment of community transmission in the country

    Changes in Mycobacterium tuberculosis-Specific Immunity With Influenza co-infection at Time of TB Diagnosis.

    Get PDF
    Background: Prior Influenza A viral (IAV) infection has been shown to increase susceptibility to tuberculosis (TB) and TB has also been shown to be a primary cause of death during pandemics, including the Spanish Influenza outbreak of 1918-1919. The majority of data has been obtained from mouse models, thus the aim of this study was to determine the impact of Flu co-infection on host immunity and disease severity in TB patients at diagnosis. Methods: Sputum from 282 patients with active TB were analyzed for presence of FluA/FluB RNA at presentation using multiplex PCR. Sputum RNA was also analyzed for Mycobacterium tuberculosis (Mtb) load using 16S RNA amplification. Supernatants from digested sputum and Mtb antigen-stimulated whole blood were analyzed using multiplex cytokine arrays and PBMC were analyzed for cytokine production from CD4+ T, CD8+ T and Mucosal Associated Invariant T cells (MAITs). Results: 12 (4.3%) of TB patients were found to have FluA or FluB viral RNA present in their sputum at the time of TB diagnosis. The TB/Flu co-infected patients had a significantly higher bacterial load compared to those with TB mono-infection (p = 0.0026). They had lower levels of IL17A in ex vivo sputum (p = 0.0275) and higher MCP-1 (CCL2) levels in the blood following PPD stimulation (p = 0.0267). TB/Flu co-infected subjects had significantly higher IFN-Îł+IL-17+CD4+ and IFN-Îł+IL-17-CD8+ cells compared to TB mono-infected subjects. Conclusions: These data show that Flu co-infection at time of TB diagnosis is associated with a higher bacterial load and differential cellular and soluble profiles. These findings show for the first time the impact of TB/Flu co-infection in a human cohort and support the potential benefit of Flu vaccination in TB-endemic settings

    Etiology of Bacterial Meningitis Among Children < 5 Years Old in Cote d'Ivoire: Findings of Hospital-based Surveillance Before and After Pneumococcal Conjugate Vaccine Introduction

    Get PDF
    Background: Bacterial meningitis remains a major disease affecting children in Cîte d’Ivoire. Thus, with support from the World Health Organization (WHO), Cîte d’Ivoire has implemented pediatric bacterial meningitis (PBM) surveillance at 2 sentinel hospitals in Abidjan, targeting the main causes of PBM: Streptococcus pneumoniae (pneumococcus), Haemophilus influenzae, and Neisseria meningitidis (meningococcus). Herein we describe the epidemiological characteristics of PBM observed in Cîte d’Ivoire during 2010–2016. Methods: Cerebrospinal fluid (CSF) was collected from children aged <5 years admitted to the Abobo General Hospital or University Hospital Center Yopougon with suspected meningitis. Microbiology and polymerase chain reaction (PCR) techniques were used to detect the presence of pathogens in CSF. Where possible, serotyping/grouping was performed to determine the specific causative agents. Results: Overall, 2762 cases of suspected meningitis were reported, with CSF from 39.2% (1083/2762) of patients analyzed at the WHO regional reference laboratory in The Gambia. In total, 82 (3.0% [82/2762]) CSF samples were positive for bacterial meningitis. Pneumococcus was the main pathogen responsible for PBM, accounting for 69.5% (52/82) of positive cases. Pneumococcal conjugate vaccine serotypes 5, 18C, 19F, and 6A/B were identified post–vaccine introduction. Emergence of H. influenzae nontypeable meningitis was observed after H. influenzae type b vaccine introduction. Conclusions: Despite widespread use and high coverage of conjugate vaccines, pneumococcal vaccine serotypes and H. influenzae type b remain associated with bacterial meningitis among children aged <5 years in Cîte d’Ivoire. This reinforces the need for enhanced surveillance for vaccine-preventable diseases to determine the prevalence of bacterial meningitis and vaccine impact across the country

    Risk factors for Group B Streptococcus colonisation and disease in Gambian women and their infants.

    Get PDF
    OBJECTIVES: To determine risk factors for GBS colonisation in Gambian mothers and in their infants from birth to day 60-89 of age. METHODS: Swabs and breastmilk from mothers/infant pairs were collected and cultured on selective agar. Negative samples were analysed for GBS DNA via real-time PCR. Positive isolates were serotyped using multiplex PCR and gel-agarose electrophoresis. RESULTS: Seven hundred and fifty women/infant pairs were recruited. 253 women (33.7%) were GBS-colonised at delivery. The predominant serotypes were: V (55%), II (16%), III (10%), Ia (8%) and Ib (8%). 186 infants were colonised (24.8%) at birth, 181 (24.1%) at 6 days and 96 at day 60-89 (14%). Infants born before 34 weeks of gestation and to women with rectovaginal and breastmilk colonisation at delivery had increased odds of GBS colonisation at birth. Season of birth was associated with increased odds of persistent infant GBS colonisation (dry season vs. wet season AOR 2.9; 95% CI 1.6-5.2). CONCLUSION: GBS colonisation is common in Gambian women at delivery and in their infants to day 60-89 and is dominated by serotype V. In addition to maternal colonisation, breastmilk and season of birth are important risk factors for infant GBS colonisation

    Genomic epidemiology of SARS-CoV-2 infections in The Gambia: an analysis of routinely collected surveillance data between March, 2020, and January, 2022

    Get PDF
    Background: COVID-19, caused by SARS-CoV-2, is one of the deadliest pandemics of the past 100 years. Genomic sequencing has an important role in monitoring of the evolution of the virus, including the detection of new viral variants. We aimed to describe the genomic epidemiology of SARS-CoV-2 infections in The Gambia. Methods: Nasopharyngeal or oropharyngeal swabs collected from people with suspected cases of COVID-19 and international travellers were tested for SARS-CoV-2 with standard RT-PCR methods. SARS-CoV-2-positive samples were sequenced according to standard library preparation and sequencing protocols. Bioinformatic analysis was done using ARTIC pipelines and Pangolin was used to assign lineages. To construct phylogenetic trees, sequences were first stratified into different COVID-19 waves (waves 1–4) and aligned. Clustering analysis was done and phylogenetic trees constructed. Findings: Between March, 2020, and January, 2022, 11 911 confirmed cases of COVID-19 were recorded in The Gambia, and 1638 SARS-CoV-2 genomes were sequenced. Cases were broadly distributed into four waves, with more cases during the waves that coincided with the rainy season (July–October). Each wave occurred after the introduction of new viral variants or lineages, or both, generally those already established in Europe or in other African countries. Local transmission was higher during the first and third waves (ie, those that corresponded with the rainy season), in which the B.1.416 lineage and delta (AY.34.1) were dominant, respectively. The second wave was driven by the alpha and eta variants and the B.1.1.420 lineage. The fourth wave was driven by the omicron variant and was predominantly associated with the BA.1.1 lineage. Interpretation: More cases of SARS-CoV-2 infection were recorded in The Gambia during peaks of the pandemic that coincided with the rainy season, in line with transmission patterns for other respiratory viruses. The introduction of new lineages or variants preceded epidemic waves, highlighting the importance of implementing well structured genomic surveillance at a national level to detect and monitor emerging and circulating variants. Funding: Medical Research Unit The Gambia at London School of Hygiene & Tropical Medicine, UK Research and Innovation, WHO

    Pediatric Bacterial Meningitis Surveillance in Niger: Increased Importance of Neisseria meningitidis Serogroup C, and a Decrease in Streptococcus pneumoniae Following 13-Valent Pneumococcal Conjugate Vaccine Introduction

    Get PDF
    Background: Meningitis is endemic in Niger. Haemophilus influenzae type b (Hib) vaccine and the 13-valent pneumococcal conjugate vaccine (PCV13) were introduced in 2008 and 2014, respectively. Vaccination campaign against Neisseria meningitidis serogroup A was carried out in 2010–2011. We evaluated changes in pathogen distribution using data from hospital-based surveillance in Niger from 2010 through 2016. Methods: Cerebrospinal fluid (CSF) specimens from children <5 years old with suspected meningitis were tested to detect vaccine-preventable bacterial pathogens. Confirmatory identification and serotyping/grouping of Streptococcus pneumoniae, N. meningitidis, and H. influenzae were done. Antimicrobial susceptibility testing and whole genome sequencing were performed on S. pneumoniae isolates. Results: The surveillance included 2580 patients with suspected meningitis, of whom 80.8% (2085/2580) had CSF collected. Bacterial meningitis was confirmed in 273 patients: 48% (131/273) was N. meningitidis, 45% (123/273) S. pneumoniae, and 7% (19/273) H. influenzae. Streptococcus pneumoniae meningitis decreased from 34 in 2014, to 16 in 2016. PCV13 serotypes made up 88% (7/8) of S. pneumoniae meningitis prevaccination and 20% (5/20) postvaccination. Neisseria meningitidis serogroup C (NmC) was responsible for 59% (10/17) of serogrouped N. meningitidis meningitis. Hib caused 67% (2/3) of the H. influenzae meningitis isolates serotyped. Penicillin resistance was found in 16% (4/25) of S. pneumoniae isolates. Sequence type 217 was the most common lineage among S. pneumoniae isolates. Conclusions: Neisseria meningitidis and S. pneumoniae remain important causes of meningitis in children in Niger. The decline in the numbers of S. pneumoniae meningitis post-PCV13 is encouraging and should continue to be monitored. NmC is the predominant serogroup causing N. meningitidis meningitis

    Phylogeography and resistome of pneumococcal meningitis in West Africa before and after vaccine introduction

    Get PDF
    Despite contributing to the large disease burden in West Africa, little is known about the genomic epidemiology of Streptococcus pneumoniae which cause meningitis among children under 5 years old in the region. We analysed whole-genome sequencing data from 185 S. pneumoniae isolates recovered from suspected paediatric meningitis cases as part of the World Health Organization (WHO) invasive bacterial diseases surveillance from 2010 to 2016. The phylogeny was reconstructed, accessory genome similarity was computed and antimicrobial-resistance patterns were inferred from the genome data and compared to phenotypic resistance from disc diffusion. We studied the changes in the distribution of serotypes pre- and post-pneumococcal conjugate vaccine (PCV) introduction in the Central and Western sub-regions separately. The overall distribution of non-vaccine, PCV7 (4, 6B, 9V, 14, 18C, 19F and 23F) and additional PCV13 serotypes (1, 3, 5, 6A, 19A and 7F) did not change significantly before and after PCV introduction in the Central region (Fisher's test P value 0.27) despite an increase in the proportion of non-vaccine serotypes to 40 % (n=6) in the post-PCV introduction period compared to 21.9 % (n=14). In the Western sub-region, PCV13 serotypes were more dominant among isolates from The Gambia following the introduction of PCV7, 81 % (n=17), compared to the pre-PCV period in neighbouring Senegal, 51 % (n=27). The phylogeny illustrated the diversity of strains associated with paediatric meningitis in West Africa and highlighted the existence of phylogeographical clustering, with isolates from the same sub-region clustering and sharing similar accessory genome content. Antibiotic-resistance genotypes known to confer resistance to penicillin, chloramphenicol, co-trimoxazole and tetracycline were detected across all sub-regions. However, there was no discernible trend linking the presence of resistance genotypes with the vaccine introduction period or whether the strain was a vaccine or non-vaccine serotype. Resistance genotypes appeared to be conserved within selected sub-clades of the phylogenetic tree, suggesting clonal inheritance. Our data underscore the need for continued surveillance on the emergence of non-vaccine serotypes as well as chloramphenicol and penicillin resistance, as these antibiotics are likely still being used for empirical treatment in low-resource settings. This article contains data hosted by Microreact
    corecore