173 research outputs found

    Electronic transport in locally gated graphene nanoconstrictions

    Full text link
    We have developed the combination of an etching and deposition technique that enables the fabrication of locally gated graphene nanostructures of arbitrary design. Employing this method, we have fabricated graphene nanoconstrictions with local tunable transmission and characterized their electronic properties. An order of magnitude enhanced gate efficiency is achieved adopting the local gate geometry with thin dielectric gate oxide. A complete turn off of the device is demonstrated as a function of the local gate voltage. Such strong suppression of device conductance was found to be due to both quantum confinement and Coulomb blockade effects in the constricted graphene nanostructures.Comment: 3 pages 3 figures; separated and expanded from arXiv:0705.3044v

    Electronic Transport in Dual-gated Bilayer Graphene at Large Displacement Fields

    Full text link
    We study the electronic transport properties of dual-gated bilayer graphene devices. We focus on the regime of low temperatures and high electric displacement fields, where we observe a clear exponential dependence of the resistance as a function of displacement field and density, accompanied by a strong non-linear behavior in the transport characteristics. The effective transport gap is typically two orders of magnitude smaller than the optical band gaps reported by infrared spectroscopy studies. Detailed temperature dependence measurements shed light on the different transport mechanisms in different temperature regimes.Comment: 4 pages, 3 figure

    Excited state spectroscopy in carbon nanotube double quantum dots

    Get PDF
    We report on low temperature measurements in a fully tunable carbon nanotube double quantum dot. A new fabrication technique has been used for the top-gates in order to avoid covering the whole nanotube with an oxide layer as in previous experiments. The top-gates allow us to form single dots, control the coupling between them and we observe four-fold shell filling. We perform inelastic transport spectroscopy via the excited states in the double quantum dot, a necessary step towards the implementation of new microwave-based experiments.Comment: 16 pages, 6 figures, submitted to nanoletter

    Pressure dependence of the magic twist angle in graphene superlattices

    Full text link
    The recently demonstrated unconventional superconductivity in twisted bilayer graphene (tBLG) opens the possibility for interesting applications of two-dimensional layers that involve correlated electron states. Here we explore the possibility of modifying electronic correlations by the application of uniaxial pressure on the weakly interacting layers, which results in increased interlayer coupling and a modification of the magic angle value and associated density of states. Our findings are based on first-principles calculations that accurately describe the height-dependent interlayer coupling through the combined use of Density Functional Theory and Maximally localized Wannier functions. We obtain the relationship between twist angle and external pressure for the magic angle flat bands of tBLG. This may provide a convenient method to tune electron correlations by controlling the length scale of the superlattice.Comment: 6 pages, 4 figure

    Long wavelength local density of states oscillations near graphene step edges

    Full text link
    Using scanning tunneling microscopy and spectroscopy, we have studied the local density of states (LDOS) of graphene over step edges in boron nitride. Long wavelength oscillations in the LDOS are observed with maxima parallel to the step edge. Their wavelength and amplitude are controlled by the energy of the quasiparticles allowing a direct probe of the graphene dispersion relation. We also observe a faster decay of the LDOS oscillations away from the step edge than in conventional metals. This is due to the chiral nature of the Dirac fermions in graphene.Comment: 5 pages, 4 figures, to appear in Phys. Rev. Let

    Quantum Hall Effect, Screening and Layer-Polarized Insulating States in Twisted Bilayer Graphene

    Get PDF
    We investigate electronic transport in dual-gated twisted bilayer graphene. Despite the sub-nanometer proximity between the layers, we identify independent contributions to the magnetoresistance from the graphene Landau level spectrum of each layer. We demonstrate that the filling factor of each layer can be independently controlled via the dual gates, which we use to induce Landau level crossings between the layers. By analyzing the gate dependence of the Landau level crossings, we characterize the finite inter-layer screening and extract the capacitance between the atomically-spaced layers. At zero filling factor, we observe magnetic and displacement field dependent insulating states, which indicate the presence of counter-propagating edge states with inter-layer coupling.Comment: 4 pages, 3 figure

    Electronic transport and quantum Hall effect in bipolar graphene p-n-p junction

    Full text link
    We have developed a device fabrication process to pattern graphene into nanostructures of arbitrary shape and control their electronic properties using local electrostatic gates. Electronic transport measurements have been used to characterize locally gated bipolar graphene pp-nn-pp junctions. We observe a series of fractional quantum Hall conductance plateaus at high magnetic fields as the local charge density is varied in the pp and nn regions. These fractional plateaus, originating from chiral edge states equilibration at the pp-nn interfaces, exhibit sensitivity to inter-edge backscattering which is found to be strong for some of the plateuas and much weaker for other plateaus. We use this effect to explore the role of backscattering and estimate disorder strength in our graphene devices.Comment: 4 pages 4 figures, to appear in Phys. Rev. Lett. Original version arXiv:0705.3044v1 was separated and expanded to this current version and arXiv:0709.173

    Nearly flat Chern bands in moiré superlattices

    Get PDF
    Topology and electron interactions are two central themes in modern condensed matter physics. Here, we propose graphene-based systems where both the band topology and interaction effects can be simply controlled with electric fields. We study a number of systems of twisted double layers with small twist angle where a moiré superlattice is formed. Each layer is chosen to be either AB-stacked bilayer graphene, ABC-stacked trilayer graphene, or hexagonal boron nitride. In these systems, a vertical applied electric field enables control of the bandwidth, and interestingly also the Chern number. We find that the Chern numbers of the bands associated with each of the two microscopic valleys can be ±0,±1,±2,±3 depending on the specific system and vertical electrical field. We show that these graphene moiré superlattices are promising platforms to realize a number of fascinating many-body phenomena, including (fractional) quantum anomalous Hall effects. We also discuss conceptual similarities and implications for modeling twisted bilayer graphene systems.National Science Foundation (U.S.) (Grant DMR-1608505)Simons Foundation (Simons Investigator Award)Gordon and Betty Moore Foundation (Grant GBMF4541)STC Center for Integrated Quantum Materials (Grant DMR-1231319
    • …
    corecore