1 research outputs found

    Superflexibility of ITO Electrodes via Submicron Patterning

    Get PDF
    Indium tin oxide (ITO) is the premier choice for transparent conductive electrodes in optoelectronic devices despite its inherent brittleness. Here we report the fabrication of a grating-like structure that obviates ITO’s mechanical limitations while retaining its resistivity and optical qualities. ITO nanopatterned films exhibited a resistivity <1.3 × 10<sup>–3</sup> Ω cm, which surpassed all previously reported values for flexible ITO, with a normal transmission >90% across the whole visible spectrum range. We demonstrate the nanopatterned ITO retains extraordinary flexibility and durability on heat-sensitive substrates, accommodating cyclic bending to a curvature diameter of at least 3.2 mm for over 50 cycles of compressive and decompressive flexing without significant deterioration of its resistivity or optical properties. Moreover, 2-dimensional extrapolation shows that multiaxial bending is also feasible while maintaining mechanical flexibility, durability, and optical transparency
    corecore