4 research outputs found

    A novel population-based local search for nurse rostering problem

    Get PDF
    Population-based approaches regularly are better than single based (local search) approaches in exploring the search space. However, the drawback of population-based approaches is in exploiting the search space. Several hybrid approaches have proven their efficiency through different domains of optimization problems by incorporating and integrating the strength of population and local search approaches. Meanwhile, hybrid methods have a drawback of increasing the parameter tuning. Recently, population-based local search was proposed for a university course-timetabling problem with fewer parameters than existing approaches, the proposed approach proves its effectiveness. The proposed approach employs two operators to intensify and diversify the search space. The first operator is applied to a single solution, while the second is applied for all solutions. This paper aims to investigate the performance of population-based local search for the nurse rostering problem. The INRC2010 database with a dataset composed of 69 instances is used to test the performance of PB-LS. A comparison was made between the performance of PB-LS and other existing approaches in the literature. Results show good performances of proposed approach compared to other approaches, where population-based local search provided best results in 55 cases over 69 instances used in experiments

    Susceptible exposed infectious recovered-machine learning for COVID-19 prediction in Saudi Arabia

    Get PDF
    Susceptible exposed infectious recovered (SEIR) is among the epidemiological models used in forecasting the spread of disease in large populations. SEIR is a fitting model for coronavirus disease (COVID-19) spread prediction. Somehow, in its original form, SEIR could not measure the impact of lockdowns. So, in the SEIR equations system utilized in this study, a variable was included to evaluate the impact of varying levels of social distance on the transmission of COVID-19. Additionally, we applied artificial intelligence utilizing the deep neural network machine learning (ML) technique. On the initial spread data for Saudi Arabia that were available up to June 25th, 2021, this improved SEIR model was used. The study shows possible infection to around 3.1 million persons without lockdown in Saudi Arabia at the peak of spread, which lasts for about 3 months beginning from the lockdown date (March 21st). On the other hand, the Kingdom's current partial lockdown policy was estimated to cut the estimated number of infections to 0.5 million over nine months. The data shows that stricter lockdowns may successfully flatten the COVID-19 graph curve in Saudi Arabia. We successfully predicted the COVID-19 epidemic's peaks and sizes using our modified deep neural network (DNN) and SEIR model

    A comprehensive study of machine learning for predicting cardiovascular disease using Weka and Statistical Package for Social Sciences tools

    No full text
    Artificial intelligence (AI) is simulating human intelligence processes by machines and software simulators to help humans in making accurate, informed, and fast decisions based on data analysis. The medical field can make use of such AI simulators because medical data records are enormous with many overlapping parameters. Using in-depth classification techniques and data analysis can be the first step in identifying and reducing the risk factors. In this research, we are evaluating a dataset of cardiovascular abnormalities affecting a group of potential patients. We aim to employ the help of AI simulators such as Weka to understand the effect of each parameter on the risk of suffering from cardiovascular disease (CVD). We are utilizing seven classes, such as baseline accuracy, naïve Bayes, k-nearest neighbor, decision tree, support vector machine, linear regression, and artificial neural network multilayer perceptron. The classifiers are assisted by a correlation-based filter to select the most influential attributes that may have an impact on obtaining a higher classification accuracy. Analysis of the results based on sensitivity, specificity, accuracy, and precision results from Weka and Statistical Package for Social Sciences (SPSS) is illustrated. A decision tree method (J48) demonstrated its ability to classify CVD cases with high accuracy 95.76%

    Cyberbullying detection framework for short and imbalanced Arabic datasets

    No full text
    Cyberbullying detection has attracted many researchers to detect negative comments deployed on communication platforms as cyberbullying can take many forms: verbal, implicit, explicit, or even nonverbal. The successful growth of social media in recent years has opened new perspectives on the detection of cyberbullying, although related research still encounters several challenges, such as data imbalance and expression implicitness. In this paper, we propose an automated cyberbullying detection framework designed to produce satisfactory results, especially when imbalanced short text and different dialects exist in the Arabic text data. In the proposed framework a new method to solve the imbalance problem is suggested, where the modified simulated annealing optimization algorithm is used to find the optimal set of samples from the majority class to balance the training set. This method has been evaluated using traditional machine learning algorithms including support vector machine, and deep learning algorithms including Long Short-Term Memory (LSTM) and Bidirectional LSTM (Bi-LSTM). To generate a framework that can detect Arabic written cyberbullying on communication platforms, the accuracy, recall, specificity, sensitivity and mean squared error are used as the main performance indicators. The results indicate that the proposed framework can improve the performance of the tested algorithms, and Bi-LSTM outperforms other methods for cyberbullying classification
    corecore