8 research outputs found

    Genetic restrictive cardiomyopathy: causes and consequences

    No full text
    The sarcomere as the smallest contractile unit is prone to alterations in its functional, structural and associated proteins. Sarcomeric dysfunction leads to heart failure or cardiomyopathies like hypertrophic (HCM) or restrictive cardiomyopathy (RCM) etc. Genetic based RCM, a very rare but severe disease with a high mortality rate, might be induced by mutations in genes of non-sarcomeric, sarcomeric and sarcomere associated proteins. In this review, we discuss the functional effects in correlation to the phenotype and present an integrated model for the development of genetic RCM

    Soluble adenylyl cyclase

    No full text
    Aims\bf Aims In contrast to the membrane bound adenylyl cyclases, the soluble adenylyl cyclase (sAC) is activated by bicarbonate and divalent ions including calcium. sAC is located in the cytosol, nuclei and mitochondria of several tissues including cardiac muscle. However, its role in cardiac pathology is poorly understood. Here we investigate whether sAC is involved in hypertrophic growth using two different model systems. Methods and results\textbf {Methods and results} In isolated adult rat cardiomyocytes hypertrophy was induced by 24 h ÎČ1\beta_{1}-adrenoceptor stimulation using isoprenaline (ISO) and a ÎČ2\beta_{2}-adrenoceptor antagonist (ICI118,551). To monitor hypertrophy cell size along with RNA/DNA- and protein/DNA ratios as well as the expression level of α-skeletal actin were analyzed. sAC activity was suppressed either by treatment with its specific inhibitor KH7 or by knockdown. Both pharmacological inhibition and knockdown blunted hypertrophic growth and reduced expression levels of α-skeletal actin in ISO/ICI treated rat cardiomyocytes. To analyze the underlying cellular mechanism expression levels of phosphorylated CREB, B-Raf and Erk1/2 were examined by western blot. The results suggest the involvement of B-Raf, but not of Erk or CREB in the pro-hypertrophic action of sAC. In wild type and sAC knockout mice pressure overload was induced by transverse aortic constriction. Hemodynamics, heart weight and the expression level of the atrial natriuretic peptide were analyzed. In accordance, transverse aortic constriction failed to induce hypertrophy in sAC knockout mice. Mechanistic analysis revealed a potential role of Erk1/2 in TAC-induced hypertrophy. Conclusion\bf Conclusion Soluble adenylyl cyclase might be a new pivotal player in the cardiac hypertrophic response either to long-term ÎČ1\beta_{1}-adrenoceptor stimulation or to pressure overload

    Integration of cardiac actin mutants causing hypertrophic (p.A295S) and dilated cardiomyopathy (p.R312H and p.E361G) into cellular structures

    No full text
    The human mutant cardiac α\alpha-actins p.A295S or p.R312H and p.E361G, correlated with hypertrophic or dilated cardiomyopathy, respectively, were expressed by the baculovirus/Sf21\textit {baculovirus/Sf21} insect cell system and purified to homogeneity. The purified cardiac actins maintained their native state but showed differences in Ca2+Ca^{2+}-sensitivity to stimulate the myosin-subfragment1 ATPase. Here we analyzed the interactions of these c-actins with actin-binding and -modifying proteins implicated in cardiomyocyte differentiation. We demonstrate that Arp2/3 complex and the formin mDia3 stimulated the polymerization rate and extent of the c-actins, albeit to different degrees. In addition, we tested the effect of the MICAL-1 monooxygenase, which modifies the supramolecular actin organization during development and adaptive processes. MICAL-1 oxidized these c-actin variants and induced their de-polymerization, albeit at different rates. Transfection experiments using MDCK cells demonstrated the preferable incorporation of wild type and p.A295S c-actins into their microfilament system but of p.R312H and p.E361G actins into the submembranous actin network. Transduction of neonatal rat cardiomyocytes with adenoviral constructs coding HA-tagged c-actin variants showed their incorporation into microfilaments after one day in culture and thereafter into thin filaments of nascent sarcomeric structures at their plus ends (Z-lines) except the p.E361G mutant, which preferentially incorporated at the minus ends

    Infantile restrictive cardiomyopathy

    No full text
    TNNI3\it TNNI3 encoding cTnI, the inhibitory subunit of the troponin complex, is the main target for mutations leading to restrictive cardiomyopathy (RCM). Here we investigate two cTnI-R170G/W amino acid replacements, identified in infantile RCM patients, which are located in the regulatory C-terminus of cTnI. The C-terminus is thought to modulate the function of the inhibitory region of cTnI. Both cTnI-R170G/W strongly enhanced the Ca2+Ca^{2+}-sensitivity of skinned fibres, as is typical for RCM-mutations. Both mutants strongly enhanced the affinity of troponin (cTn) to tropomyosin compared to wildtype cTn, whereas binding to actin was either strengthened (R170G) or weakened (R170W). Furthermore, the stability of reconstituted thin filaments was reduced as revealed by electron microscopy. Filaments containing R170G/W appeared wavy and showed breaks. Decoration of filaments with myosin subfragment S1 was normal in the presence of R170W, but was irregular with R170G. Surprisingly, both mutants did not affect the Ca2+Ca^{2+}-dependent activation of reconstituted cardiac thin filaments. In the presence of the N-terminal fragment of cardiac myosin binding protein C (cMyBPC-C0C2) cooperativity of thin filament activation was increased only when the filaments contained wildtype cTn. No effect was observed in the presence of cTn containing R170G/W. cMyBPC-C0C2 significantly reduced binding of wildtype troponin to actin/tropomyosin, but not of both mutant cTn. Moreover, we found a direct troponin/cMyBPC-C0C2 interaction using microscale thermophoresis and identified cTnI and cTnT, but not cTnC as binding partners for cMyBPC-C0C2. Only cTn containing cTnI-R170G showed a reduced affinity towards cMyBPC-C0C2. Our results suggest that the RCM cTnI variants R170G/W impair the communication between thin and thick filament proteins and destabilize thin filaments

    De novo missense mutations in TNNC1\it TNNC1 and TNNI3\it TNNI3 causing severe infantile cardiomyopathy affect myofilament structure and function and are modulated by troponin targeting agents

    No full text
    Rare pediatric non-compaction and restrictive cardiomyopathy are usually associated with a rapid and severe disease progression. While the non-compaction phenotype is characterized by structural defects and is correlated with systolic dysfunction, the restrictive phenotype exhibits diastolic dysfunction. The molecular mechanisms are poorly understood. Target genes encode among others, the cardiac troponin subunits forming the main regulatory protein complex of the thin filament for muscle contraction. Here, we compare the molecular effects of two infantile de novo point mutations in TNNC1\it TNNC1 (p.cTnC−G34S\it {p.cTnC-G34S}) and TNNI3\it TNNI3 ((p.cTnI−D127Y\it {p.cTnI-D127Y}) leading to severe non-compaction and restrictive phenotypes, respectively. We used skinned cardiomyocytes, skinned fibers, and reconstituted thin filaments to measure the impact of the mutations on contractile function. We investigated the interaction of these troponin variants with actin and their inter-subunit inter-actions, as well as the structural integrity of reconstituted thin filaments. Both mutations exhibited similar functional and structural impairments, though the patients developed different phenotypes. Furthermore, the protein quality control system was affected, as shown for TnC-G34S using patient’s myocardial tissue samples. The two troponin targeting agents levosimendan and green tea extract (-)-epigallocatechin-3-gallate (EGCg) stabilized the structural integrity of reconstituted thin filaments and ameliorated contractile function in vitro in some, but not all, aspects to a similar degree for both mutations

    Enhanced cardiomyocyte function in hypertensive rats with diastolic dysfunction and human heart failure patients after acute treatment with soluble guanylyl cyclase (sGC) activator

    No full text
    Aims:\textbf {Aims:} Our aim was to investigate the effect of nitric oxide (NO)-independent activation of soluble guanylyl cyclase (sGC) on cardiomyocyte function in a hypertensive animal model with diastolic dysfunction and in biopsies from human heart failure with preserved ejection fraction (HFpEF). Methods:\textbf {Methods:} Dahl salt-sensitive (DSS) rats and control rats were fed a high-salt diet for 10 weeks and then acutely treated in vivo\textit {in vivo} with the sGC activator BAY 58-2667 (cinaciguat) for 30 min. Single skinned cardiomyocyte passive stiffness (FpassiveF_{passive}) was determined in rats and human myocardium biopsies before and after acute treatment. Titin phosphorylation, activation of the NO/sGC/cyclic guanosine monophosphate (cGMP)/protein kinase G (PKG) cascade, as well as hypertrophic pathways including NO/sGC/cGMP/PKG, PKA, calcium–calmodulin kinase II (CaMKII), extracellular signal-regulated kinase 2 (ERK2), and PKC were assessed. In addition, we explored the contribution of pro-inflammatory cytokines and oxidative stress levels to the modulation of cardiomyocyte function. Immunohistochemistry and electron microscopy were used to assess the translocation of sGC and connexin 43 proteins in the rat model before and after treatment. Results:\textbf {Results:} High cardiomyocyte FpassiveF_{passive} was found in rats and human myocardial biopsies compared to control groups, which was attributed to hypophosphorylation of total titin and to deranged site-specific phosphorylation of elastic titin regions. This was accompanied by lower levels of PKG and PKA activity, along with dysregulation of hypertrophic pathway markers such as CaMKII, PKC, and ERK2. Furthermore, DSS rats and human myocardium biopsies showed higher pro-inflammatory cytokines and oxidative stress compared to controls. DSS animals benefited from treatment with the sGC activator, as FpassiveF_{passive}, titin phosphorylation, PKG and the hypertrophic pathway kinases, pro-inflammatory cytokines, and oxidative stress markers all significantly improved to the level observed in controls. Immunohistochemistry and electron microscopy revealed a translocation of sGC protein toward the intercalated disc and t-tubuli following treatment in both control and DSS samples. This translocation was confirmed by staining for the gap junction protein connexin 43 at the intercalated disk. DSS rats showed a disrupted connexin 43 pattern, and sGC activator was able to partially reduce disruption and increase expression of connexin 43. In human HFpEF biopsies, the high FpassiveF_{passive}, reduced titin phosphorylation, dysregulation of the NO–sGC–cGMP–PKG pathway and PKA activity level, and activity of kinases involved in hypertrophic pathways CaMKII, PKC, and ERK2 were all significantly improved by sGC treatment and accompanied by a reduction in pro-inflammatory cytokines and oxidative stress markers. Conclusion:\textbf {Conclusion:} Our data show that sGC activator improves cardiomyocyte function, reduces inflammation and oxidative stress, improves sGC–PKG signaling, and normalizes hypertrophic kinases, indicating that it is a potential treatment option for HFpEF patients and perhaps also for cases with increased hypertrophic signaling

    The interplay between S-glutathionylation and phosphorylation of cardiac troponin I and myosin binding protein C in end-stage human failing hearts

    No full text
    Oxidative stress is defined as an imbalance between the antioxidant defense system and the production of reactive oxygen species (ROS). At low levels, ROS are involved in the regulation of redox signaling for cell protection. However, upon chronical increase in oxidative stress, cell damage occurs, due to protein, DNA and lipid oxidation. Here, we investigated the oxidative modifications of myofilament proteins, and their role in modulating cardiomyocyte function in end-stage human failing hearts. We found altered maximum Ca2+Ca^{2+}-activated tension and Ca2+Ca^{2+} sensitivity of force production of skinned single cardiomyocytes in end-stage human failing hearts compared to non-failing hearts, which was corrected upon treatment with reduced glutathione enzyme. This was accompanied by the increased oxidation of troponin I and myosin binding protein C, and decreased levels of protein kinases A (PKA)- and C (PKC)-mediated phosphorylation of both proteins. The Ca2+Ca^{2+} sensitivity and maximal tension correlated strongly with the myofilament oxidation levels, hypo-phosphorylation, and oxidative stress parameters that were measured in all the samples. Furthermore, we detected elevated titin-based myocardial stiffness in HF myocytes, which was reversed by PKA and reduced glutathione enzyme treatment. Finally, many oxidative stress and inflammation parameters were significantly elevated in failing hearts compared to non-failing hearts, and corrected upon treatment with the anti-oxidant GSH enzyme. Here, we provide evidence that the altered mechanical properties of failing human cardiomyocytes are partially due to phosphorylation, S-glutathionylation, and the interplay between the two post-translational modifications, which contribute to the development of heart failure

    Modulation of titin-based stiffness in hypertrophic cardiomyopathy via protein kinase D

    No full text
    The giant protein titin performs structure-preserving functions in the sarcomere and is important for the passive stiffness (FpassiveF_{passive}) of cardiomyocytes. Protein kinase D (PKD) enzymes play crucial roles in regulating myocardial contraction, hypertrophy, and remodeling. PKD phosphorylates myofilament proteins, but it is not known whether the giant protein titin is also a PKD substrate. Here, we aimed to determine whether PKD phosphorylates titin and thereby modulates cardiomyocyte FpassiveF_{passive} in normal and failing myocardium. The phosphorylation of titin was assessed in cardiomyocyte-specific PKD knock-out mice (cKO) and human hearts using immunoblotting with a phosphoserine/threonine and a phosphosite-specific titin antibody. PKD-dependent site-specific titin phosphorylation in vivo\textit {in vivo} was quantified by mass spectrometry using stable isotope labeling by amino acids in cell culture (SILAC) of SILAC-labeled mouse heart protein lysates that were mixed with lysates isolated from hearts of either wild-type control (WT) or cKO mice. FpassiveF_{passive} of single permeabilized cardiomyocytes was recorded before and after PKD and HSP27 administration. All-titin phosphorylation was reduced in cKO compared to WT hearts. Multiple conserved PKD-dependent phosphosites were identified within the Z-disk, A-band and M-band regions of titin by quantitative mass spectrometry, and many PKD-dependent phosphosites detected in the elastic titin I-band region were significantly decreased in cKO. Analysis of titin site-specific phosphorylation showed unaltered or upregulated phosphorylation in cKO compared to matched WT hearts. FpassiveF_{passive} was elevated in cKO compared to WT cardiomyocytes and PKD administration lowered FpassiveF_{passive} of WT and cKO cardiomyocytes. Cardiomyocytes from hypertrophic cardiomyopathy (HCM) patients showed higher FpassiveF_{passive} compared to control hearts and significantly lower FpassiveF_{passive} after PKD treatment. In addition, we found higher phosphorylation at CaMKII-dependent titin sites in HCM compared to control hearts. Expression and phosphorylation of HSP27, a substrate of PKD, were elevated in HCM hearts, which was associated with increased PKD expression and phosphorylation. The relocalization of HSP27 in HCM away from the sarcomeric Z-disk and I-band suggested that HSP27 failed to exert its protective action on titin extensibility. This protection could, however, be restored by administration of HSP27, which significantly reduced FpassiveF_{passive} in HCM cardiomyocytes. These findings establish a previously unknown role for PKDin regulating diastolic passive properties of healthy and diseased hearts
    corecore