12 research outputs found

    Refractory magmas in back-arc basin settings ? Experimental constraints on the petrogenesis of a Lau Basin example

    No full text
    We present the results of an experimental study on a refractory back-arc basin glass composition 123 95-1 recovered close to the intersection of the North Western Lau Spreading Centre and the Peggy Ridge in the Central Lau Basin. We used both the invers

    Anticorrelation between low δ13C of eclogitic diamonds and high δ18O of their coesite and garnet inclusions requires a subduction origin

    No full text
    Diamond is essentially impermeable and unreactive under many conditions, and tiny mineral inclusions within natural diamonds can faithfully preserve information on the chemical and physical conditions during diamond growth. The stable isotope ratios of carbon, nitrogen, oxygen, and sulfur in diamonds and their mineral inclusions have been used to constrain models of diamond formation, but interpretations of the data have differed dramatically. The crux of the controversy lies in the interpretation of the carbon isotope ratios of eclogite-suite diamonds, which range well outside those expected for typical mantle materials such as peridotites, basalts, and carbonatites. Proposed explanations for these anomalous carbon isotope ratios include derivation from primordial mantle inhomogeneities, fractionated mantle fluids, and subducted biogenic carbon. Working with samples from three continents, we have analyzed the carbon isotope compositions of eclogite-suite diamonds and the oxygen isotope composition of their mineral inclusions, primarily by ion microprobe methods. We have discovered a previously unrecognized, remarkably consistent anticorrelation between these two isotopic systems, in that virtually all diamonds with anomalously low carbon isotope ratios have silicate inclusions with anomalously high oxygen isotope ratios. This is a fundamental observation that can only be explained by formation of eclogite-suite diamonds through subduction of seafloor altered basalt, admixed with marine biogenic carbon, into the field of diamond stability

    New insights into volcanic processes from deep mining of the southern diatreme within the Argyle lamproite pipe, Western Australia

    No full text
    Underground mining and deep drilling of the richly diamondiferous ~1.2 Ga Argyle lamproite in Western Australia has prompted a re-evaluation of the geology of the pipe. Argyle is considered to be a composite pipe that formed by the coalescence of several diatremes and has been offset and elongated by post-emplacement faulting. Recent geological studies have recognised at least five distinct volcaniclastic lamproite lithofacies with differing diamond grades. The new data suggest that the centre of the southern (main) diatreme is occupied by well-bedded, olivine lamproite lapilli tuff with very high diamond grades (>10 ct/t). Characteristic features include a clast-supported fabric and high modal abundance of densely packed lamproite lapilli and coarse-grained, likely mantle-derived olivine now replaced by serpentine and/or talc. The persistence of small-scale graded and cross-bedding in this lithofacies to depths of ~1.5 km below the original surface prior to erosion suggests phreatomagmatic volcanism forming the diatreme was syn-eruptively accompanied by subsidence of the tephra, maintaining a steep-walled diatreme in the water-saturated country rock sediments

    Emplacement of the Argyle diamond deposit into an ancient rift zone triggered by supercontinent breakup

    No full text
    Abstract Argyle is the world’s largest source of natural diamonds, yet one of only a few economic deposits hosted in a Paleoproterozoic orogen. The geodynamic triggers responsible for its alkaline ultramafic volcanic host are unknown. Here we show, using U-Pb and (U-Th)/He geochronology of detrital apatite and detrital zircon, and U-Pb dating of hydrothermal titanite, that emplacement of the Argyle lamproite is bracketed between 1311 ± 9 Ma and 1257 ± 15 Ma (2σ), older than previously known. To form the Argyle lamproite diatreme complex, emplacement was likely driven by lithospheric extension related to the breakup of the supercontinent Nuna. Extension facilitated production of low-degree partial melts and their migration through transcrustal corridors in the Paleoproterozoic Halls Creek Orogen, a rheologically-weak rift zone adjacent to the Kimberley Craton. Diamondiferous diatreme emplacement during (super)continental breakup may be prevalent but hitherto under-recognized in rift zones at the edges of ancient continental blocks

    Stable H–C–O isotope and trace element geochemistry of the Cummins Range Carbonatite Complex, Kimberley region, Western Australia: implications for hydrothermal REE mineralization, carbonatite evolution and mantle source regions

    Get PDF
    The Neoproterozoic Cummins Range Carbonatite Complex (CRCC) is situated in the southern Halls Creek Orogen adjacent to the Kimberley Craton in northern Western Australia. The CRCC is a composite, subvertical to vertical stock ∼2 km across with a rim of phlogopite–diopside clinopyroxenite surrounding a plug of calcite carbonatite and dolomite carbonatite dykes and veins that contain variable proportions of apatite–phlogopite–magnetite ± pyrochlore ± metasomatic Na–Ca amphiboles ± zircon. Early high-Sr calcite carbonatites (4,800–6,060 ppm Sr; La/YbCN = 31.6–41.5; δ13C = −4.2 to −4.0 ‰) possibly were derived from a carbonated silicate parental magma by fractional crystallization. Associated high-Sr dolomite carbonatites (4,090–6,310 ppm Sr; La/YbCN = 96.5–352) and a late-stage, narrow, high rare earth element (REE) dolomite carbonatite dyke (La/YbCN = 2756) define a shift in the C–O stable isotope data (δ18O = 7.5 to 12.6 ‰; δ13C = −4.2 to −2.2 ‰) from the primary carbonatite field that may have been produced by Rayleigh fractionation with magma crystallization and cooling or through crustal contamination via fluid infiltration. Past exploration has focussed primarily on the secondary monazite-(Ce)-rich REE and U mineralization in the oxidized zone overlying the carbonatite. However, high-grade primary hydrothermal REE mineralization also occurs in narrow (<1 m wide) shear-zone hosted lenses of apatite–monazite-(Ce) and foliated monazite-(Ce)–talc rocks (≤∼25.8 wt% total rare earth oxide (TREO); La/YbCN = 30,085), as well as in high-REE dolomite carbonatite dykes (3.43 wt% TREO), where calcite, parisite-(Ce) and synchysite-(Ce) replace monazite-(Ce) after apatite. Primary magmatic carbonatites were widely hydrothermally dolomitized to produce low-Sr dolomite carbonatite (38.5–282 ppm Sr; La/YbCN = 38.4–158.4; δ18O = 20.8 to 21.9 ‰; δ13C = −4.3 to −3.6 ‰) that contains weak REE mineralization in replacement textures, veins and coating vugs. The relatively high δD values (−54 to −34 ‰) of H2O derived from carbonatites from the CRCC indicate that the fluids associated with carbonate formation contained a significant amount of crustal component in accordance with the elevated δ13C values (∼−4 ‰). The high δD and δ13C signature of the carbonatites may have been produced by CO2–H2O metasomatism of the mantle source during Paleoproterozoic subduction beneath the eastern margin of the Kimberley Craton

    Zirconolite, zircon and monazite-(Ce) U-Th-Pb age constraints on the emplacement, deformation and alteration history of the Cummins Range Carbonatite Complex, Halls Creek Orogen, Kimberley region, Western Australia

    No full text
    In situ SHRIMP U-Pb dating of zirconolite in clinopyroxenite from the Cummins Range Carbonatite Complex, situated in the southern Halls Creek Orogen, Kimberley region, Western Australia, has provided a reliable 207Pb/206Pb age of emplacement of 1009 ± 16 Ma. Variably metamict and recrystallised zircons from co-magmatic carbonatites, including a megacryst ~1.5 cm long, gave a range of ages from ~1043–998 Ma, reflecting partial isotopic resetting during post-emplacement deformation and alteration. Monazite-(Ce) in a strongly foliated dolomite carbonatite produced U-Th-Pb dates ranging from ~900–590 Ma. Although the monazite-(Ce) data cannot give any definitive ages, they clearly reflect a long history of hydrothermal alteration/recrystallisation, over at least 300 million years. This is consistent with the apparent resetting of the Rb-Sr and K-Ar isotopic systems by a post-emplacement thermal event at ~900 Ma during the intracratonic Yampi Orogeny. The emplacement of the Cummins Range Carbonatite Complex probably resulted from the reactivation of a deep crustal structure within the Halls Creek Orogen during the amalgamation of Proterozoic Australia with Rodinia over the period ~1000–950 Ma. This may have allowed an alkaline carbonated silicate magma that was parental to the Cummins Range carbonatites, and generated by redox and/or decompression partial melting of the asthenospheric mantle, to ascend from the base of the continental lithosphere along the lithospheric discontinuity constituted by the southern edge of the Halls Creek Orogen. There is no evidence of a link between the emplacement of the Cummins Range Carbonatite Complex and mafic large igneous province magmatism indicative of mantle plume activity. Rather, patterns of Proterozoic alkaline magmatism in the Kimberley Craton may have been controlled by changing plate motions during the Nuna–Rodinia supercontinent cycles (~1200–800 Ma)

    Bundesrepublik Deutschland

    No full text
    corecore