190 research outputs found
Properties of Dense Strange Hadronic Matter with Quark Degrees of Freedom
The properties of strange hadronic matter are studied in the context of the
modified quark-meson coupling model using two substantially different sets of
hyperon-hyperon () interactions. The first set is based on the Nijmegen
hard core potential model D with slightly attractive interactions. The
second potential set is based on the recent SU(3) extension of the Nijmegen
soft-core potential NSC97 with strongly attractive interactions which may
allow for deeply bound hypernuclear matter. The results show that, for the
first potential set, the hyperon does not appear at all in the bulk at
any baryon density and for all strangeness fractions. The binding energy curves
of the resulting system vary smoothly with density and the system
is stable (or metastable if we include the weak force). However, the situation
is drastically changed when using the second set where the hyperons
appear in the system at large baryon densities above a critical strangeness
fraction. We find strange hadronic matter undergoes a first order phase
transition from a system to a for strangeness
fractions and baryonic densities exceeding twice ordinary nuclear
matter density. Furthermore, it is found that the system built of
is deeply bound. This phase transition affects significantly the equation of
state which becomes much softer and a substantial drop in energy density and
pressure are detected as the phase transition takes place.Comment: 25 pages latex and 12 figures in postscript forma
Hot nuclear matter in the modified quark-meson coupling model with quark-quark correlations
Short-range quark-quark correlations in hot nuclear matter are examined
within the modified quark-meson coupling model (MQMC) by adding repulsive
scalar and vector quark-quark interactions. Without these correlations, the bag
radius increases with the baryon density. However when the correlations are
introduced the bag size shrinks as the bags overlap. Also as the strength of
the scalar quark-quark correlation is increased, the decrease of the effective
nucleon mass with the baryonic density is slowed down and tends to
saturate at high densities. Within this model we study the phase transition
from the baryon-meson phase to the quark-gluon plasma (QGP) phase with the
latter modeled as an ideal gas of quarks and gluons inside a bag. Two models
for the QGP bag parameter are considered. In one case, the bag is taken to be
medium-independent and the phase transition from the hadron phase to QGP is
found to occur at 5-8 times ordinary nuclear matter density for temperatures
less than 60 MeV. For lower densities, the transition takes place at higher
temperature reaching up to 130 MeV at zero density. In the second case, the QGP
bag parameter is considered medium-dependent as in the MQMC model for the
hadronic phase. In this case, it is found that the phase transition occurs at
much lower densities.Comment: 8 pages, latex, 4 eps figure
Heated nuclear matter, condensation phenomena and the hadronic equation of state
The thermodynamic properties of heated nuclear matter are explored using an
exactly solvable canonical ensemble model. This model reduces to the results of
an ideal Fermi gas at low temperatures. At higher temperatures, the
fragmentation of the nuclear matter into clusters of nucleons leads to features
that resemble a Bose gas. Some parallels of this model with the phenomena of
Bose condensation and with percolation phenomena are discussed. A simple
expression for the hadronic equation of state is obtained from the model.Comment: 12 pages, revtex, 1 ps file appended (figure 1
Numerical solution of the color superconductivity gap in a weak coupling constant
We present the numerical solution of the full gap equation in a weak coupling
constant . It is found that the standard approximations to derive the gap
equation to the leading order of coupling constant are essential for a secure
numerical evaluation of the logarithmic singularity with a small coupling
constant. The approximate integral gap equation with a very small should be
inverted to a soft integral equation to smooth the logarithmic singularity near
the Fermi surface. The full gap equation is solved for a rather large coupling
constant . The approximate and soft integral gap equations are solved
for small values. When their solutions are extrapolated to larger
values, they coincide the full gap equation solution near the Fermi surface.
Furthermore, the analytical solution matches the numerical one up to the order
one O(1). Our results confirm the previous estimates that the gap energy is of
the order tens to 100 MeV for the chemical potential MeV. They
also support the validity of leading approximations applied to the full gap
equation to derive the soft integral gap equation and its analytical solution
near the Fermi surface.Comment: 7 pages+ 6 figs, Stanford, Frankfurt and Bethlehe
Liquid-gas phase transition in nuclei in the relativistic Thomas-Fermi theory
The equation of state (EOS) of finite nuclei is constructed in the
relativistic Thomas-Fermi theory using the non-linear
model. The caloric curves are calculated by confining the nuclei in the
freeze-out volume taken to be a sphere of size about 4 to 8 times the normal
nuclear volume. The results obtained from the relativistic theory are not
significantly different from those obtained earlier in a non-relativistic
framework. The nature of the EOS and the peaked structure of the specific heat
obtained from the caloric curves show clear signals of a liquid-gas phase
transition in finite nuclei. The temperature evolution of the Gibbs potential
and the entropy at constant pressure indicate that the characteristics of the
transition are not too different from the first-order one.Comment: RevTex file(19 pages) and 12 psfiles for fugures. Physical Review C
(in Press
Searching for the Nuclear Liquid-Gas Phase Transition in Au + Au Collisions at 35 MeV/nucleon
Within the framework of Classical Molecular Dynamics, we study the collision
Au + Au at an incident energy of 35 MeV/nucleon. It is found that the system
shows a critical behaviour at peripheral impact parameters, revealed through
the analysis of conditional moments of charge distributions, Campi Scatter
Plot, and the occurrence of large fluctuations in the region of the Campi plot
where this critical behaviour is expected. When applying the experimental
filters of the MULTICS-MINIBALL apparatus, it is found that criticality signals
can be hidden due to the inefficiency of the experimental apparatus. The
signals are then recovered by identifying semi-peripheral and peripheral
collisions looking to the velocity distribution of the largest fragment, then
by selecting the most complete events.Comment: RevTex file, 21 pages + 19 figures available upon request from
[email protected]
Nuclear fragmentation: sampling the instabilities of binary systems
We derive stability conditions of Asymmetric Nuclear Matter () and
discuss the relation to mechanical and chemical instabilities of general
two-component systems. We show that the chemical instability may appear as an
instability of the system against isoscalar-like rather than isovector-like
fluctuations if the interaction between the two constituent species has an
attractive character as in the case of . This leads to a new kind of
liquid-gas phase transition, of interest for fragmentation experiments with
radioactive beams.Comment: 4 pages (LATEX), 3 Postscript figures, improved version, added
reference
Equation of State, Spectra and Composition of Hot and Dense Infinite Hadronic Matter in a Microscopic Transport Model
Equilibrium properties of infinite relativistic hadron matter are
investigated using the Ultrarelativistic Quantum Molecular Dynamics (UrQMD)
model. The simulations are performed in a box with periodic boundary
conditions. Equilibration times depend critically on energy and baryon
densities. Energy spectra of various hadronic species are shown to be isotropic
and consistent with a single temperature in equilibrium. The variation of
energy density versus temperature shows a Hagedorn-like behavior with a
limiting temperature of 13010 MeV. Comparison of abundances of different
particle species to ideal hadron gas model predictions show good agreement only
if detailed balance is implemented for all channels. At low energy densities,
high mass resonances are not relevant; however, their importance raises with
increasing energy density. The relevance of these different conceptual
frameworks for any interpretation of experimental data is questioned.Comment: Latex, 20 pages including 6 eps-figure
- …