89 research outputs found

    Mineral phosphorus drives glacier algal blooms on the Greenland Ice Sheet

    Get PDF
    Melting of the Greenland Ice Sheet is a leading cause of land-ice mass loss and cryosphere-attributed sea level rise. Blooms of pigmented glacier ice algae lower ice albedo and accelerate surface melting in the ice sheet’s southwest sector. Although glacier ice algae cause up to 13% of the surface melting in this region, the controls on bloom development remain poorly understood. Here we show a direct link between mineral phosphorus in surface ice and glacier ice algae biomass through the quantification of solid and fluid phase phosphorus reservoirs in surface habitats across the southwest ablation zone of the ice sheet. We demonstrate that nutrients from mineral dust likely drive glacier ice algal growth, and thereby identify mineral dust as a secondary control on ice sheet melting.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Samples from Lomonosov Ridge place new constraints on the geological evolution of Arctic Ocean

    No full text
    A number of rock samples were collected from two dredge positions on the Lomonosov Ridge at water depths of 2–3.5 km. The dredge samples are dominated by sediments deformed and metamorphosed under greenschist-facies conditions 470 myr ago according to 40Ar/39Ar dating of metamorphic muscovite. This shows that the Lomonosov Ridge was involved in a major Mid-Ordovician orogenic event that correlates with early arc–terrane accretion observed in northern Ellesmere Island, Svalbard, and other parts of the Caledonian belt. Detrital zircon age spectra of these metasediments span the Mesoproterozoic–Palaeoproterozoic with a main peak at around 1.6 Ga, and a pattern similar to that known from Caledonian metasedimentary rocks in East Greenland and northern Norway, as well as from Cambrian sediments in Estonia and Palaeozoic sediments on Novaya Zemlya. A second population of dredge samples comprises undeformed, non-metamorphic sandstones and siltstones. Detrital zircons in these sediments span the Palaeoproterozoic with a few Archaean zircons. Both rock types are covered by an up to 8 Ma ferromanganese crust and are evaluated to represent outcrop, and apatite fission-track data from three of the rock samples indicate that exposure at the seabed corresponds to a regional event of uplift and erosion that affected the Arctic in the Late Miocene. The data from the Lomonosov Ridge suggest that the 470 Ma orogenic event extended from Scotland and northern Scandinavia into the Arctic, including Svalbard, the Pearya Terrane and the Chukchi Borderlands
    • …
    corecore