6 research outputs found

    Simulation of Electronic Structure of Aluminum Phosphide Nanocrystals Using Ab Initio Large Unit Cell Method

    Get PDF
    Ab initio restricted Hartree-Fock method coupled with the large unit cell method is used to determine the electronic structure and physical properties of aluminum phosphide (AlP) nanocrystals between 216 and 1000 atoms with sizes ranging up to about 3 nm in diameter. Core and surface parts with different sizes are investigated. Investigated properties include total energy, cohesive energy, energy gap, valence band width, ionicity, and degeneracy of energy levels. The oxygenated (001)-(1×1) facet that expands with larger sizes of nanocrystals is investigated to determine the rule of the surface in nanocrystals electronic structure. Results revealed that electronic properties converge to some limit as the size of the large unit cell increases and that the 216 core atoms approaches bulk of Aluminum phosphide material in several properties. Increasing nanocrystals size also resulted in a decrease in lattice constant, increase of core cohesive energy (absolute value), increase of core energy gap, increase of core valence band width and decrease of ionicity. Valence and conduction bands are wider on the surface due to splitting and oxygen atoms. The method also shows fluctuations in the converged energy gap, valence band width and cohesive energy of core part of nanocrystals duo to shape variation

    Response to Comment on (Novel two-dimensional porous graphitic carbon nitride C6N7 monolayer: A First-principle calculations [Appl. Phys. Lett. 2021, 119, 142102])

    Full text link
    Recently, reported a comments on the our paper [Appl. Phys. Lett. 119, 142102 (2021)]. With our response, the APL journal rejected their non scientific comments. There are some ambiguities about their claim: 1-They can check the phonon dispersion of their structure to see ZA out-of-plane mode. 2-They report the uniaxial stress-strain responses in Fig 2., which is unrelated to our paper. For a more helpful understanding of the mechanical properties of the novel C6N7 monolayer, they can publish a paper. 3-They mentioned: Using the DFT method and with assuming a thickness of 3.35 A for the C6N7 monolayer based on graphene thickness. Why did they choose this thickness while we know our C6N7 monolayer is at without buckling? The distance of ZA out-of-plane movement of ions in C6N7 is different from Graphene.Comment: 1 pag
    corecore